數學考科

- 作答注意事項 -

考試時間：100 分鐘

題型題數：單選題 4 題，多選題 7 題，選填題第 A 至 I 項共 9 題

作答方式：用 2B 鉛筆在「答案卡」上作答：更正時，應以橡皮擦擦拭，切勿使用修正液(帶)。未依規定塗記答案卡，致機器掃描無法辨識答案者，其後果由考生自行承擔。

選填題作答說明：選填題的題號是 A，B，C，……，而答案的格式

每題可能不同，考生必須依各題的格式塗答，且每一個列號只能在一個格子塗記。請仔細閱讀下面的例子。

例：若第 B 項的答案格式是 \(\frac{18}{19} \)，而依題意計算出來的答案是 \(\frac{3}{8} \)，則考生必須

分別在答案卡上的第 18 列的 \(\Box \) 與第 19 列的 \(\Box \) 畫記，如：

\[
\begin{array}{ccccccccccc}
18 & \Box \\
19 & \Box \\
\end{array}
\]

例：若第 C 項的答案格式是 \(\frac{49}{50} \)，而答案是 \(\frac{7}{50} \) 時，則考生必須分別在答案卡的第 20 列的 \(\Box \) 與第 21 列的 \(\Box \) 畫記，如：

\[
\begin{array}{ccccccccccc}
20 & \Box \\
21 & \Box \\
\end{array}
\]

※試題後附有参考公式及可能用到的數値
第壹部分：選擇題（占55分）

一、單選題（占20分）

說明：第1題至第4題，每題有5個選項，其中只有一個是正確或最適當的選項，
請畫記在答案卡之「選擇（填）題答案區」。各題答對者，得5分；答錯、
未作答或畫記多於一個選項者，該題以零分計算。

1. 西元前4世紀，管子一書記載了音階形成術－三分損益法。由此法可推出「宮」、「商」、
「角」、「徵」、「羽」五聲音階。已知弦長的琴弦發出的音為「宮」，而弦長的琴弦發出的音為「角」（頻率330Hz），請問下列哪一個弦長發出的音為「羽」（頻率
440Hz）？(註：弦振動的頻率與弦長成反比)

(1) \(\frac{2^3}{3^2}\ell\)
(2) \(\frac{2}{3}\ell\)
(3) \(\frac{2^7}{3^8}\ell\)
(4) \(\frac{2^4}{3^3}\ell\)
(5) \(\frac{2^3}{3^4}\ell\)

2. 符合不等式 \(\frac{2x+6}{x^2-x-6} \leq -1\)的整數解x共有多少個？

(1) 0
(2) 1
(3) 2
(4) 3
(5) 4
3. 已知 \(a\) 為整數，且 \(a > 77\)。\(f(x) = (x-101)(x-102)(x-a) - 50\) 有整係數一次因式，求 \(a\) = ?

(1) 100
(2) 203
(3) 78
(4) 85
(5) 80

4. 已知 \(x = 3^{\log_2}\)，則下列何者正確？

(1) \(0 \leq x \leq 1.3\)
(2) \(1.3 \leq x < 1.74\)
(3) \(1.74 \leq x < 2.2\)
(4) \(2.2 \leq x < 3\)
(5) \(x \geq 3\)

二、多選題（占 35 分）

說明：第 5 題至第 11 題，每題有 5 個選項，其中至少有一個是正確的選項，請將正確選項圈記在答案卡之「選擇（塗）題答案區」。各題之選項獨立判定，所有選項均答對者，得 5 分；答錯 1 個選項者，得 3 分；答錯 2 個選項者，得 1 分；答錯多於 2 個選項或所有選項均未作答者，該題以零分計算。

5. 下列哪些函數的圖形與直線 \(y = x\) 有交點？

(1) \(y = 2^{x}\)
(2) \(y = 2^{x+2}\)
(3) \(y = \log_2 x\)
(4) \(y = \log_2 \left(\frac{x}{2}\right)\)
(5) \(y = 2^x - x\)
6. 已知二次函數 \(y = (3 - k)x^2 - kx \) 的圖形恆在 \(y = k \) 的上方，則 \(k \) 值有可能為下列何者？
 (1) 6
 (2) 2
 (3) −2
 (4) −6
 (5) −10

7. 下列哪一組函數圖形可以利用平移使其重合？
 (1) \(y = x^2 \) 與 \(y = 2x^2 \)
 (2) \(y = x^3 \) 與 \(y = (x - 1)^3 \)
 (3) \(y = -3x^3 - 4 \) 與 \(y = -3x^3 + x - 4 \)
 (4) \(y = 2^x \) 與 \(y = 2 \cdot 2^x \)
 (5) \(y = \log_3 x \) 與 \(y = 2 \log_3 x \)

8. 設 \(a = 2^{3^x} = 2^{8^t} \), \(b = 2^{4^t} \), \(c = 3^{2^t} \), \(d = 3^{4^t} \)，則下列哪些選項正確？
 (1) \(a \geq b \)
 (2) \(b \geq c \)
 (3) \(ab = cd \)
 (4) \(ac = bd \)
 (5) \(\log(a + c) < \log(b + d) \)
9. 設三實數 a, b, c 滿足 $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ 成等差，a, b, c 成等比，則下列哪些選項正確？

(1) $a+c = 0$
(2) $ac > 0$
(3) $b = \frac{a+c}{2}$
(4) $a > b$
(5) $b > c$

10. 關於實係數三次多項式 $f(x) = ax^3 + bx^2 + cx + d$，下列敘述哪些正確？

(1) 若 $f(x) = 0$ 在 1 與 2 之間有實根，則 $f(1) \cdot f(2) < 0$
(2) 若 $f(2+i) = 0$，則 $f(2-i) = 0$
(3) 若 $\frac{2}{3}$ 為 $f(x)$ 之一根，則 a 必為 3 的倍數
(4) $y = f(x)$ 的圖形與 x 軸必有奇數個交點
(5) $y = f(x)$ 與 $y = -x^2$ 的圖形必有交點

11. 設 $x > 0$，已知 $\log x - \log 5678$ 是整數且 $|\log x - \log 1234| < 1$，則 $\log x$ 的首數可能為？

(1) 1
(2) 2
(3) 3
(4) 4
(5) 0
第貳部分：選填題（占 45 分）

說明：1. 第 A 至 I 題，將答案畫記在答卡之「選填（填）題答案區」所標示的列號 (12–29)。
2. 每題答對得 5 分，答錯不倒扣，未答或答錯不給分。

A. 將 \(\log_4(\sqrt{3}+\sqrt{5}) - \sqrt{3} - \sqrt{5}) \) 的值化為最簡分數 = \(\frac{12}{13} \)。

B. 一次多項式 \(f(x) = ax + b \) 若 \(\frac{f(2013) - f(1998)}{15} = 4 \) 且 \(y = f(x) \) 與 \(y = x^2 \) 的圖形交於 \(A(-1, 1) \)、\(B(m, n) \) 兩點，則 \((m, n) = (\frac{14}{15}, \frac{16}{16}) \)。

C. 已知二次函數 \(f(x) = 9 \times \frac{(x-5)(x-7)}{(1-5)(1-7)} + 9 \times \frac{(x-1)(x-7)}{(5-1)(5-7)} - 6 \times \frac{(x-1)(x-5)}{(7-1)(7-5)} \)，求 \(f(x) \) 的最大值為 \(\frac{17}{18} \)。

D. 已知有一個分子與分母的差為 4 的最簡分數，將其化成小數。此小數在小數點第 2 位四捨五入後的值為 0.4，則此最簡分數為 \(\frac{19}{20} \)。
E. 在一筆直的道路上有一間圖書館 A 與一間超級市場 B，分別位於 A(10 公里) 與 B(13 公里) 處，如圖所示。小明的家位於該道路上 P(x 公里) 的位置。星期天早上，小明騎著腳踏車從家裡出發，以每小時 10 公里的速度到圖書館；而小明的媽媽以每小時 20 公里的速度，騎著電動機車到超級市場。若兩人各自到達目的地所花的時間總和不超過 36 分鐘，則 x 的最大範圍為 \(21 \leq x \leq 22\frac{23}{24}\)。

F. 已知直角三角形斜邊上的高其長度為 5，則直角三角形面積的最小值為 \(\frac{24}{25}\)。

G. 滿足不等式 \(\log_{3/2}(x^2 - 58) \leq 1\) 的整數 x 共有 \(26\) 個。

H. 若 \(p\) 為質數，有一整係數多項式 \(f(x)\)，使得 \(f(18) = 2013\)，\(f(p) = 1910\)，試求滿足上述條件的所有質數 \(p\) 之和為 \(27\frac{28}{29}\)。

I. 設 \(a\) 為實數，使得 \(a + \log_8 3\)、\(a + \log_4 3\)、\(a + \log_2 3\) 形成等比數列，則此等比數列的公比為 \(29\)。
參考公式及可能用到的數值

1. \(\log 2 \approx 0.3010 \), \(\log 3 \approx 0.4771 \), \(\log 7 \approx 0.8451 \)

2. 通過 \((x_1, y_1)\) 與 \((x_2, y_2)\) 的直線斜率 \(m = \frac{y_2 - y_1}{x_2 - x_1} \), \(x_2 \neq x_1 \)

3. 算幾不等式：\(x > 0 \), \(y > 0 \), \(\frac{x+y}{2} \geq \sqrt{xy} \)

 等號成立時，\(x = y \), 反之亦然
第壹部分：選擇題

一、單選題

1. \(\frac{2^6}{x} = \frac{440}{330} \Rightarrow \frac{4}{3} = \frac{2^6}{3^6} \Rightarrow x = \frac{2^4}{3^4}\)

2. \(\frac{2x+6}{x^2-x-6} \leq 0 \Rightarrow \frac{x^2+x}{x^2-x-6} \leq 0 \Rightarrow (x^2+x)(x^2-x-6) < 0\) 或 \(x^2+x = 0\)

\(x(x+1)(x+2)(x-3) < 0\) 或 \(x = 0, -1\)

\(-2 < x \leq 1\) 或 \(0 \leq x < 3\)

整數解為 \(-1, 0, 1, 2\) 共 4 個

故選 (5)

3. 設整係數一次因式為 \(x - r, \) 依整數

\(f(t) = (t-101)(t-102)(t-a) = 50 = 5^2 \times 2 \times 1\)

\(t-101 = 2\)

\(t = 103\)

\(t = a = 78\)

\(t = 102 = 1\)

\(t = 102 = 2\)

\(t = 100 = 1\)

\(t = 25\)

由 (1)/(2) \(\Rightarrow a = 78\)

4. \(\log 2 \approx 0.3010, \ 0.25 < \log 2 < 0.5\)

\(3^{0.25} < 3^{0.5} \approx \sqrt{3} \approx 1.732 < 1.74\)

\(3^{0.25} = 3^{1/4} = \sqrt[4]{3} \approx 1.3 < (\sqrt{3})^2 = 1.69 < 1.732 < \sqrt{3}\)

... \(1.3 < (\sqrt{3})^2 \Rightarrow 1.3 < 3^{0.5} < 1.74\)

二、多選題

5. \(1\)

\(y = x, \ y = 2^x, \ y = 3^x\)

\(y = \log_2 x, \ y = \log_3 x, \ y = x\)

6. \(y = x, \ y = 2^x, \ y = 3^x\) 解聯立，得 \(x = 2^x - x, \) 故 \(2x = 2^x \Rightarrow x = 2\) \(x = 1\) 依可以 \(x = 2\) \(y = 2\) \(x = 1\) 依可以 \(y = 1\) 依可以

故選 (3)/(4)/(5)

7. (3) \(y = x^2 - x\) 圖形

\(y = x^2 - x - 2\) 圖形

\(y = x^2 - x - 1\) 圖形

\(y = x^2 - x - 0\) 圖形

8. \(a = 2^1, \ b = 2^{58}, \ c = 2^{64}\) \(\Rightarrow a > b \Rightarrow a > b\)

\(b = 2^{64} = (2^{6})^{16} = 2^{64}\)

\(c = 2^{58} = 2^{64}\)

\(\Rightarrow b > c \Rightarrow b > c\)

(3) \(ab = 2^{58} \times 2^{64} = 2^{124}, \ cd = 2^{64} \times 2^{58} = 2^{122} \Rightarrow ab \neq cd\)

(4) \(ac = 2^{58} \times 2^{16}, \ bd = 2^{64} \times 2^{58}, \Rightarrow ac = bd\)

\(a + c = 2^{58} + 2^{64} \Rightarrow b + d = 2^{58} + 2^{64}\)

\(\Rightarrow a + c > b + d \Rightarrow \log(a + c) > \log(b + d)\)

故選 (1)/(2)

9. \(\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) 成等差

\(\Rightarrow \frac{2}{b} = \frac{1}{a} + \frac{1}{c}\)

\(\Rightarrow a + c = 2b\)

\(\Rightarrow a + c = b^2\)

\(\Rightarrow b = \sqrt{a + c}\)

\(\Rightarrow ac = a^2 + 2ac + c^2 = 4ac \Rightarrow (a - c)^2 = 0 \Rightarrow a = c\)

\(\Rightarrow a = b = c\)

\(\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) 成等差

\(\Rightarrow ac > 0\)

故選 (2)/(3)

10. (1) 不一定

(2) 由實數方程式係係數對定理可得 \(f(2 - i) = 0\)

(3) \(f(x)\) 不一定為整係數
(4) 若 \(f(x) = x^3 + x^2 \)，則 \(y = f(x) \) 與 \(x \) 軸只交於 2 點

(5) \(ax^3 + bx^2 + cx + d = -x^3 \) \((a \neq 0)\) 爲三次基底判別式方程式，必有根的

欲選(2)(5)

11. \(\log 5678 = 3 + \log 5.678 \)

令 \(\log x = k + \log 5.678 \)，\(k \in Z \)

\[\log x = \log 1234 \] 令 \(k = k + 3 + \log 5.678 - \log 1.234 \)

\(\therefore 0 < \log x - \log 1234 \) 又 \(0 < \log 5.678 - \log 1.234 \) \(<1\)

\(\therefore k - 3 = 0 \) 或 \(-1\)，故 \(k = 3 \) 或 \(2 \)，故選(2)(3)

第2部分：選填題

A. \(\sqrt{3} + \sqrt{5} = \frac{\sqrt{6} + \sqrt{10}}{\sqrt{2}} = \frac{\sqrt{3} + \sqrt{5}}{\sqrt{2}} = \frac{\sqrt{10} + \sqrt{2}}{2} \)

\(\sqrt{3} - \sqrt{5} = \frac{\sqrt{6} - \sqrt{10}}{\sqrt{2}} = \frac{\sqrt{3} - \sqrt{5}}{\sqrt{2}} = \frac{\sqrt{10} - \sqrt{2}}{2} \)

\(\therefore \log_4 \sqrt{3} + \sqrt{5} = \log_4 \left(\frac{\sqrt{10} + \sqrt{2}}{2} \right) = \log_4 \sqrt{2} = \frac{1}{2} \log_4 2 = \frac{1}{4} \)

B. \(a = \frac{f(2013) - f(1998)}{2013 - 1998} = 4 \)

\(A(-1, 1) \Rightarrow f(-1) = -a + b = 1 \) \(\therefore b = 5 \)

令 \(4x + 5 = x^2 \) \(\Rightarrow x = 5, -1 \) 故 \(B(5, 25) \)

C. \(f(x) \) 爲二次多項式，且 \(f(1) = f(5) = 9 \)

\(\Rightarrow x = 3 \) 為 \(y = f(x) \) 的對稱軸，又 \(x^2 \) 項係數為 \(\frac{5}{4} \)，開口向下

\(f(x) \) 的最大值為 \(f(3) = 14 \)

D. 設最簡分式為 \(\frac{a}{a+4} \)，\(a \) 為正整數，\(a \) 且 \(0 \leq \frac{a}{a+4} \leq 0.45 \)

\(\Rightarrow 0.35 \leq \frac{a}{a+4} < 0.45 \Rightarrow \frac{7}{20} \leq \frac{a}{a+4} < \frac{9}{20} \)

\(\Rightarrow \frac{7}{20} \leq \frac{a}{a+4} \Rightarrow \frac{7(a+4)}{20} \leq a + 4 \Rightarrow \left\{ \begin{array}{l} \frac{a}{a+4} < \frac{9}{20} \Rightarrow \frac{a}{a+4} < \frac{9}{20} \\ \frac{a}{a+4} < \frac{9}{20} \Rightarrow \frac{a}{a+4} < \frac{9}{20} \end{array} \right. \)

\(\Rightarrow 2 \frac{2}{3} \leq a < 3 \Rightarrow \frac{a}{a+4} = \frac{a}{a+4} = a = \frac{3}{7} \)

E. \(\frac{x-10}{10} + \frac{x-13}{20} \leq 0.6 \Rightarrow \frac{x}{10} + \frac{13}{20} \leq 0 \Rightarrow x \leq 13 \)

(1) \(x \geq 13 \) 時，\(2x - 20 + 13 - x \leq 12 \Rightarrow x \leq 15 \) 得 \(13 \leq x \leq 15 \)

(2) \(10 \leq x < 13 \) 時，\(2x - 20 + 13 - x \leq 12 \Rightarrow x \leq 19 \) 得 \(10 \leq x < 13 \)

(3) \(x < 10 \) 時，\(20 - 2x + 13 - x \leq 12 \Rightarrow x \geq 7 \) 得 \(7 \leq x < 10 \)

由(1)(2)(3)可得 \(7 \leq x \leq 15 \)

F. 如圖直角 \(\triangle ABC \)

\(\overline{AD} \) 為斜邊上的高，\(\overline{AD} = 5 \)

\(\overline{BC} = a, \overline{CD} = b \)

根據勾股定理 \(s^2 = ab \)

\(\Rightarrow \sqrt{ab} = 5 \)

斜邊 \(= a + b \)

根據算術不等式 \(\frac{a + b}{2} \geq \sqrt{ab} \Rightarrow a + b \geq 2 \sqrt{ab} = 10 \)

斜邊最小值 \(= 10 \)，面積最小值為 \(\frac{10 \times 5}{2} = 25 \)