數學考科

一作答注意事項一

考試時間：100 分鐘
題型題數：單選題 6 項，多選題 7 項，選填題第 A 至 G 題共 7 項
作答方式：用 2B 鉛筆在「答案卡」上作答；更正時，應以橡皮擦擦拭，切勿使用修正液（帶）。未依規定塗記答案卡，致機器掃描無法辨識答案者，其後果由考生自行承擔。
選填題作答說明：選填題的題號是 A，B，C，……，而答案的格式
每題可能不同，考生必須依各題的格式填答，且每一個列號只能在一個格子塗記，請仔細閱讀下面的例子。
例：若第 B 題的答案格式是 \(\frac{10}{10} \)，而依題意計算出來的答是 \(\frac{3}{8} \)，則考生必須
分別在答案卡上的第 18 列的 \(\Box \) 與第 19 列的 \(\Box \) 畫記，如:

<table>
<thead>
<tr>
<th>18</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>±</td>
</tr>
</tbody>
</table>

例：若第 C 題的答案格式是 \(\frac{50}{50} \)，而答是 \(\frac{7}{50} \) 時，則考生必須分別在答案
卡的第 20 列的 \(\Box \) 與第 21 列的 \(\Box \) 畫記，如:

<table>
<thead>
<tr>
<th>20</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>±</td>
</tr>
</tbody>
</table>

※ 試題後附有參考公式及可能用到的數值
第壹部分：選擇題（占 65 分）
一、單選題（占 30 分）

1. 坐標平面上 O(0, 0)、A(3, 0)、B(2, 3)、C(0, 2)，將四點代入目標函數 \(P(x, y) = kx - 3y \)，當 \(k \) 爲下列何數時，使得目標函數 \(P \) 在 B 点有最小值？
 (1) -10
 (2) -4
 (3) 2
 (4) 4
 (5) 10

2. 已知 \(1^3 + 2^3 + \cdots + n^3 = \left(\frac{n(n+1)}{2} \right)^2 \)，設 \(S = 1^3 + 3^3 + 5^3 + \cdots + 19^3 \)，則下列何者正確？
 (1) 19000 < S < 20000
 (2) 20000 < S < 21000
 (3) 21000 < S < 22000
 (4) 23000 < S < 24000
 (5) 24000 < S < 25000

3. 若將矩陣 \[
\begin{bmatrix}
5 & 9 & 1 \\
47 & 0 & 1
\end{bmatrix}
\] 經列運算後得 \[
\begin{bmatrix}
1 & 0 & a & b \\
0 & 1 & c & d
\end{bmatrix}
\]，則矩陣 \[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\] = ?
 (1) \[
\begin{bmatrix}
9 & 5 \\
7 & 4
\end{bmatrix}
\]
 (2) \[
\begin{bmatrix}
4 & 7 \\
5 & 9
\end{bmatrix}
\]
 (3) \[
\begin{bmatrix}
-7 & 9 \\
4 & -5
\end{bmatrix}
\]
 (4) \[
\begin{bmatrix}
7 & -9 \\
-4 & 5
\end{bmatrix}
\]
 (5) \[
\begin{bmatrix}
-5 & 4 \\
9 & -7
\end{bmatrix}
\]
4. 如圖(1)，A(4, f(4))、C(-2, f(-2))為拋物線 \(f(x) = \frac{x^2}{a} \) 上兩點。若 ABCD 為正方形，且 \(AB \) 平行 y 軸，則 a = ?
(1) 4
(2) 2
(3) 1
(4) \frac{1}{2}
(5) \frac{1}{4}

5. 試求最小正整數 n，使得 \(C_0^n + (\sqrt{4 - 2\sqrt{3}}) C_1^n + (\sqrt{4 - 2\sqrt{3}})^2 C_2^n + (\sqrt{4 - 2\sqrt{3}})^3 C_3^n + \cdots + (\sqrt{4 - 2\sqrt{3}})^n C_6^n > 10^{10} \)。
(1) 21
(2) 22
(3) 40
(4) 41
(5) 42

6. 如圖(2)，點 O 為 \(\triangle ABC \) 之內切圓且與 \(BC \)、\(CA \)、\(AB \) 分別相切於 D、E、F。已知 \(AB = 5 \)、\(BC = 6 \)、\(CA = 7 \)，設 \(\overrightarrow{AD} = m \overrightarrow{AB} + n \overrightarrow{AC} \)，求 \(3m + 6n = ? \)
(1) 7
(2) 6
(3) 5
(4) 4
(5) 3

二、多選題（占 35 分）

說明：第 7 項至第 13 項，每題有 5 個選項，其中至少有一個是正確的選項，請將正確選項塗記在答案卡之「選擇（填）題答案區」。各題之選項獨立判定，所有選項均答對者，得 5 分；答錯 1 個選項者，得 3 分；答錯 2 個選項者，得 1 分；答錯多於 2 個選項或所有選項均未作答者，該題以零分計算。
7. 下列哪些方程組無解？

(1) \[
\begin{align*}
2x + 3y &= 1 \\
\frac{1}{2}x + \frac{1}{3}y &= 1
\end{align*}
\]

(2) \[
\begin{align*}
\frac{x-1}{3} &= \frac{y-2}{4} \\
\frac{x-2}{4} &= \frac{y-1}{3}
\end{align*}
\]

(3) \[
\begin{align*}
x + 2y + z &= 4 \\
8x + y - 2z &= -3 \\
6x - 3y - 4z &= 5
\end{align*}
\]

(4) \[
\begin{align*}
x - 3y - 2z &= 0 \\
2x + y + 2z &= 1 \\
4x + y + 3z &= 3
\end{align*}
\]

(5) \[
\begin{align*}
x + 4 &= y = \frac{z - 3}{2} \\
\frac{x - 5}{-2} &= \frac{y}{-1} = \frac{z + 1}{6}
\end{align*}
\]

8. 已知 \(f(x) \) 與 \(g(x) \) 皆為實係數多項式；設 \(H(x) = f(x) \cdot g(x) \)，依表(1)中的正負值，試判斷方程式 \(H(x) = 0 \) 在哪兩個連續整數間必有實根存在？

(1) 0 與 1
(2) 1 與 2
(3) 2 與 3
(4) 3 與 4
(5) 4 與 5

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(g(x))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

9. 設二元二次方程式 \(ax^2 + by^2 - 2x + 4y + 5 = 0 \)，請選出正確的選項。

(1) 當 \(a = b = 1 \)，則方程式的圖形為圓
(2) 當 \(a = b = -1 \)，則方程式的圖形為圓
(3) 當 \(a = 1 \) 且 \(b = 2 \)，則方程式的圖形為橢圓
(4) 當 \(a = \frac{1}{2} \) 且 \(b = \frac{1}{4} \)，則方程式的圖形為橢圓
(5) 當 \(a = 1 \) 且 \(b = -2 \)，則方程式的圖形為雙曲線
10. 設 \(\triangle ABC \) 中，\(\angle A = 30^\circ \) 且 \(AB = 8 \)，請選出正確的選項。(1) 若 \(AC = 4 \)，則可求出唯一的 \(\triangle ABC \) 面積
(2) 若 \(BC = 4 \)，則可求出唯一的 \(\triangle ABC \) 面積
(3) 若 \(BC = 5 \)，則可求出唯一的 \(\triangle ABC \) 面積
(4) 若 \(BC = 6 \)，則可求出唯一的 \(\triangle ABC \) 面積
(5) 若 \(BC = 8 \)，則可求出唯一的 \(\triangle ABC \) 面積

11. 下列各函數的圖形，哪些對稱於 \(y \) 軸？
(1) \(y = 2^{|x|} \)
(2) \(y = |\log_3 x| \)
(3) \(y = -x^4 + 3 \)
(4) \(y = 4x^3 \)
(5) \(y = (x-1)^2 \)

12. 已知三組二維數據如下：

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x')</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y')</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x'')</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y'')</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

設三組資料的相關係數分別為 \(r_1 \)、\(r_2 \)、\(r_3 \)，\(y \) 對 \(x \) 的迴歸直線斜率分別為 \(m_1 \), \(m_2 \), \(m_3 \)，請選出正確的選項。
(1) \(r_2 = r_1 \)
(2) \(r_2 = 2r_1 \)
(3) \(r_3 = -r_1 \)
(4) \(m_2 = m_1 \)
(5) \(m_3 = -m_1 \)
13. 設 \(f(x) \) 為實係數多項式，已知 \(f(x) \) 除以 \(x^3 - 1 \) 與 \(x^3 + 1 \) 所得的餘式分別為 \(x^2 + 1 \) 與 \(x^2 - 1 \)，請選出正確的選項。
(1) \(f(x) \) 除以 \((x - 1) \) 的餘式為 2
(2) \(f(x) \) 除以 \((x + 1) \) 的餘式
(3) \(f(x) \) 除以 \((x^2 - 1) \) 的餘式為 2 或 0
(4) \(f(x) \) 除以 \(x^2 + x + 1 \) 的餘式為 \(-x \)
(5) \(f(x) \) 除以 \(x^2 - x + 1 \) 的餘式為 \(x \)

第貳部分：選填題（占 35 分）

說明：1. A 至 G 題，將答案塗在答案卡之「選擇（填）題答案區」所標示的列號（14-32）。
2. 每題完全答對得 5 分，答錯不扣分，未完全答對不給分。

A. 已知 \(a, b, c \) 成等比數列，設 \(f(x) = \log_x x \)，若 \(f(a) = \frac{1}{2}, f(b) = \frac{1}{3} \)，求 \(f(c) = \frac{14}{15} \)。（化為最簡分數）

B. 投擲一公正骰子三次，所得的點數依序為 \(a, b, c \)。在 \(b \) 為偶數的條件下，求方程式 \(ax^2 - bx + c = 0 \) 有實數解的機率為 \(\frac{16}{17} \)。（化為最簡分數）

C. 圖(3)為 7 個全等的正六邊形組成的圖形，試求 \(\cos \theta = \frac{10}{\sqrt{20\,\sqrt{21\,\sqrt{22}}} \, } \)。
D. 有 10 個大小相同的球，其中 4 個為紅球，6 個為白球。將 10 個球全放入圖(4)的方格中，每格放一球，若上列至少 2 個紅球且同一行不可皆為紅球，共有 23 / 24 種放入的方法。

E. 對任意二次函數 \(f(x) = ax^2 + bx + c \)，恒有 \(f(5) = pf(1) + qf(2) + rf(4) \)，其中 \(p, q, r \) 爲固定的實數，求數對 \((p, q, r) = (25, 26, 27, 28) \)。

F. 設直線 \(L \) 過 \((4,1)\) 且與直線 \(M : 2x - y + 1 = 0 \) 夾 \(45^\circ \)。若 \(L \) 的斜率為正，求 \(L \) 的直線方程式為 \(29x - 30y = 1 \)。

G. \(P(x, y) \) 為圖 \((x+4)^2 + (y-6)^2 = 5 \) 上的一個動點，設 \(t \) 為任意實數，試求 \(\sqrt{(x-2t-2)^2 + (y-t+1)^2} \) 的最小值為 \(31/\sqrt{32} \)。 (化為最簡根式)。
參考公式及可能用到的數值

1. 一元二次方程式 \(ax^2 + bx + c = 0 \) 的公式解為：
 \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

2. 三角函數的和角公式：
 \[
 \begin{align*}
 \sin(A + B) &= \sin A \cos B + \cos A \sin B \\
 \cos(A + B) &= \cos A \cos B - \sin A \sin B \\
 \tan(A + B) &= \frac{\tan A + \tan B}{1 - \tan A \tan B}
 \end{align*}
 \]

3. \(\Delta ABC \) 的正弦定理：
 \[
 \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \quad (R \text{ 為 } \Delta ABC \text{ 外接圓半徑})
 \]

 \(\Delta ABC \) 的餘弦定理：
 \[c^2 = a^2 + b^2 - 2ab \cos C \]

4. 一維數據 \(x_1, x_2, \ldots, x_n \)，算術平均數 \(\mu_X = \frac{1}{n}(x_1 + x_2 + \cdots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i \)

 標準差 \(\sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)^2} = \sqrt{\frac{1}{n} ((\sum_{i=1}^{n} x_i^2) - n \mu_X^2)} \)

5. 二維數據 \((x, y) : (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \)，相關係數 \(r_{X,Y} = \frac{\sum_{i=1}^{n}(x_i - \mu_X)(y_i - \mu_Y)}{n \sigma_X \sigma_Y} \)

 迴歸直線 (最適合直線) 方程式：
 \[y - \mu_Y = r_{X,Y} \frac{\sigma_Y}{\sigma_X} (x - \mu_X) \]

6. 參考數值：
 \[
 \begin{align*}
 \sqrt{2} &\approx 1.414, \quad \sqrt{3} \approx 1.732, \quad \sqrt{5} \approx 2.236, \quad \sqrt{6} \approx 2.449, \quad \pi \approx 3.142 \\
 \text{對數值：} &\quad \log_{10} 2 \approx 0.3010, \quad \log_{10} 3 \approx 0.4771, \quad \log_{10} 5 \approx 0.6990, \quad \log_{10} 7 \approx 0.8451
 \end{align*}
 \]
第壹部分：選擇題

一、單選題
1. \[P(x, y) = kx - 3y \]
 \[P(x, y) = (0, 0) \quad (3, 0) \quad (2, 3) \quad (0, 2) \]
 \[\begin{array}{c|c|c|c|c}
 (2k - 9) & 0 & 3k & 2k - 9 & -6 \\
 \end{array} \]

 \[\because B \] 為最小值，\[\therefore \]
 \[2k - 9 \leq 0 \quad \Rightarrow \quad k \leq \frac{9}{2} \]
 \[2k - 9 \geq 3k \quad \Rightarrow \quad k \geq -9 \quad \therefore \quad k \geq \frac{3}{2} \]

 故選(2)

2. \[(l^2 + 2^2 + 3^2 + \cdots + 19^2) - (2^2 + 4^2 + \cdots + 18^2) \]
 \[= (l^2 + 2^2 + \cdots + 19^2) - (2^2 + 4^2 + \cdots + 9^2) \]
 \[= \left(\frac{9 \times 10 \times 19}{2} \right)^2 - 8 \left(\frac{9 \times 10}{2} \right)^2 = 19900 , \] 故選(1)

3. \[\begin{vmatrix} \begin{array}{c}
 a \\
 b \\
 \end{array} \end{vmatrix} = \begin{vmatrix} \begin{array}{c}
 5 \\
 9 \\
 \end{array} \end{vmatrix} = \begin{vmatrix} \begin{array}{c}
 0 \\
 5 \\
 \end{array} \end{vmatrix} = \begin{vmatrix} \begin{array}{c}
 7 \\
 -9 \\
 \end{array} \end{vmatrix} = \begin{vmatrix} \begin{array}{c}
 -7 \\
 9 \\
 \end{array} \end{vmatrix} = \begin{vmatrix} \begin{array}{c}
 9 \\
 7 \\
 \end{array} \end{vmatrix} = \begin{vmatrix} \begin{array}{c}
 4 \\
 7 \\
 \end{array} \end{vmatrix} \]

 故選(3)

4. A 和 C 的 x 差為 6，\[\therefore \]
 遠長為 6

 A 在拋物線 \[\Rightarrow A(4, \frac{16}{a}) \]
 C 在拋物線上 \[\Rightarrow C(-2, \frac{4}{a}) \]

 A 和 C 的 y 差為 \[\frac{16}{a} - \frac{4}{a} = 6 \Rightarrow a = 2 , \] 故選(2)

5. \[(1 + x)^n = C_n^0 + C_n^1 x + C_n^2 x^2 + \cdots + C_n^n x^n \]

 \[\because \] 原式 \[= \left(1 + \sqrt{4 - 2\sqrt{3}} \right)^n = \left(1 + \sqrt{3} \right)^n \]
 \[\sqrt[3]{\sqrt[3]{\cdots}} > 0 \Rightarrow \frac{3}{2} > 0 \Rightarrow \frac{n}{2} \log 3 > 10 \log 10 \]

 \[\Rightarrow \frac{n}{2} \times 0.4771 > 10 \Rightarrow n > 41 \cdots \] \[\] 故選(5)

6. \[\begin{array}{c}
 \because \text{內切} \quad \therefore \frac{AF}{AE} = \frac{a}{b} \quad \frac{BF}{BD} = \frac{b}{c} \quad \frac{CD}{CE} = \frac{c}{a} \\
 \] \[\begin{array}{c|c|c|c|c}
 a + b = 5 & a = 3 & b + c = 6 & b = 2 & a + c = 7 \\
 \end{array} \]

 利用分點公式 \[\frac{2}{3} = \frac{4}{6} + \frac{2}{6} \]

 \[\therefore \quad \frac{2}{3} = \frac{4}{6} + \frac{2}{6} \]

 \[\because m = \frac{2}{3} \\ n = \frac{1}{3} \quad \text{故 } 3m + 6n = 3 \times \frac{2}{3} + 6 \times \frac{1}{3} = 4 \quad \text{故選(4)} \]

二、多選題
7. \((1) \times \frac{2}{3} \) \[\Rightarrow \text{有解} \]
 \((2) \times \frac{2}{3} \) \[\Rightarrow \text{有解} \]
 \[\left\{ \begin{array}{c}
 x + 2y + z = 4 \cdots (1) \\
 8x + y - 2z = -3 \cdots (2) \\
 6x - 3y - 4z = 5 \cdots (3) \\
 \end{array} \right. \]

8. \[P(x, y) = f(x) \cdot g(x) = 0 \Rightarrow f(x) = 0 \quad \text{或} \quad g(x) = 0 \]
 \((1) \times \quad \because f(0) \cdot f(1) > 0 \quad \text{且} \quad g(0) \cdot g(1) > 0 \Rightarrow \text{不一定有實根} \]
 \((2) \times \quad \because f(0) \cdot f(2) < 0 \Rightarrow f(x) = 0 \quad \text{有實根} \]
 \((3) \times \quad \because f(2) \cdot f(3) < 0 \quad \text{且} \quad g(2) \cdot g(3) < 0 \Rightarrow f(x) = 0 \quad \text{與} \quad g(x) = 0 \]
 \[\] \[\text{皆有實根} \]
 \((4) \times \quad \because g(3) \cdot g(4) < 0 \Rightarrow g(x) = 0 \quad \text{有實根} \]
 \((5) \times \quad \because f(4) \cdot f(5) < 0 \quad \text{且} \quad g(4) \cdot g(5) < 0 \Rightarrow f(x) = 0 \quad \text{與} \quad g(x) = 0 \]
 \[\] \[\text{皆有實根} \]

9. \[(1) \times \quad \because \quad \text{當} \quad a = b = 1 \Rightarrow (x - 1)^2 + (y + 2)^2 = 0 \Rightarrow \text{一點} (1, -2) \]
 \((2) \times \quad \because \quad \text{當} \quad a = b = -1 \Rightarrow (x + 1)^2 + (y - 2)^2 = 0 \Rightarrow \text{圓} \]
 \((3) \times \quad \because \quad \text{當} \quad a = 1 \quad \text{且} \quad b = 2 \Rightarrow (x - 1)^2 + 2(y + 1)^2 = -2 \Rightarrow \text{無形圖} \]
 \((4) \times \quad \because \quad \text{當} \quad a = \frac{1}{2} \quad \text{且} \quad b = \frac{1}{4} \Rightarrow (x - 2)^2 + \frac{1}{4} (y + 8)^2 = 13 \]
 \[\Rightarrow \frac{(x - 2)^2}{13} + \frac{(y + 8)^2}{52} = 1 \Rightarrow \text{橢圓} \]
 \((5) \times \quad \because \quad \text{當} \quad a = 1 \quad \text{且} \quad b = -2 \Rightarrow (x - 1)^2 - 2(y - 1)^2 = -6 \]
 \[\Rightarrow (x - 1)^2 - \frac{(y - 1)^2}{3} = 1 \Rightarrow \text{雙曲線} \]

 故選(2)(4)(5)

10. \((1) \times \quad \because \Delta ABC = \frac{1}{2} \times 8 \times 4 \times \sin 30^\circ = 8 \]

 \((2) \times \quad \because \quad \text{當} \]
 \((3) \times \quad \because \quad \text{當} \]
 \((4) \times \quad \because \)
11. (1) \(\bigcirc \) :

\[y = f(x) \]

(2) \(\times \) :

\[y = f(x) \]

(3) \(\bigcirc \) :

\[y = f(x) \]

(4) \(\times \) :

\[y = f(x) \]

故選 (1)(3)

12. (1) \(\bigcirc \) \(\times \) :

\[x' = 2x, \quad y' = y \]

\(\therefore \eta = \frac{y}{y'} \)

(3) \(\bigcirc \) \(\times \) :

\[\sigma_x = \sigma_y, \quad \sigma_x^* = \sigma_y^* \]

\[\rho = \frac{\sigma_x^* - \sigma_y^*}{\sigma_x - \sigma_y} \]

(4) \(\bigcirc \) :

\[m_1 = \frac{\sigma_x^*}{\sigma_x}, \quad m_2 = \frac{\sigma_y^*}{\sigma_y}, \quad \eta = \frac{y}{y'} \]

\(\therefore \eta = \frac{y}{y'} \)

(5) \(\bigcirc \) :

\[m_1 = \frac{\sigma_x^*}{\sigma_x}, \quad m_2 = \frac{\sigma_y^*}{\sigma_y}, \quad \eta = \frac{y}{y'} \]

\(\therefore \eta = \frac{y}{y'} \)

故選 (1)(3)(5)

13. 已知 \(f(x) = (x^2 - 1)q(x) + (x^2 + 1) \Rightarrow f(1) = 2 \)

\[f(x) = (x^2 + 1)q(x) + (x^2 - 1) \Rightarrow f(-1) = 0 \]

(1) \(\bigcirc \) : 所求為 \(f(1) = 2 \)

(2) \(\times \) : \(f(-1) = 0 \)

(3) \(\bigcirc \) :

\[f(x) = (x^2 - 1)q(x) + (ax + b) \]

\[f(1) = a + b = 2, \quad f(-1) = -a + b = 0 \]

\(\therefore a = 1, \quad b = 1 \)

(4) \(\bigcirc \) :

\[f(x) = (x^2 - 1)q(x) + (x^2 + 1) \]

\(\therefore f(x) = (x^2 + 1)q(x) + (x^2 - 1) \)

(5) \(\bigcirc \) :

\[f(x) = (x^2 + 1)q(x) + (x^2 - 1) \]

故選 (1)(2)(4)

第2部分：選填題

A. \(\therefore f(a) = \frac{1}{2} \Rightarrow \log_a x = \frac{1}{2} \)

\(f(b) = \frac{1}{3} \Rightarrow \log_a b = \frac{1}{3} \)

又知 \(b = \frac{1}{2} \) 設 \(\log_a b = \frac{1}{2} \)

\[2 \times \frac{1}{2} = \frac{1}{2} \]

\[\log_a c = \frac{1}{6} \]

B. \(a^2 - bx + c = 0 \) 有實數解 \(D \geq 0 \Rightarrow b^2 - 4ac \geq 0 \Rightarrow b^2 \geq 4ac \)

\(b = 2 \times 4 \geq 4ac \Rightarrow 1 \geq ac \Rightarrow a = 1, \quad c = 1 \) 各組

\(b = 4 \times 6 \geq 4ac \Rightarrow 4 \geq ac \Rightarrow \frac{a}{c} = \frac{1}{1} \)

共 8 組

\(b = 6 \) 時 \(36 \geq 4ac \Rightarrow a \geq \quad \frac{a}{c} \) 各組

\(\begin{array}{c|cccccc}
\hline
a & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\frac{a}{c} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array} \)

共 17 組

\(\therefore \) 機率為 \(\frac{18}{6 \times 3 \times 6} = \frac{13}{54} \)

C. 利用極座標，令正六邊形邊長為 2

\[O(0, 0), \quad A(2, 4\sqrt{3}), \quad B(8, 2\sqrt{3}) \]

\[\overrightarrow{OA} = (2, 4\sqrt{3}), \quad \overrightarrow{OB} = (8, 2\sqrt{3}) \]

\[\cos \theta = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA}||\overrightarrow{OB}|} = \frac{16 + 24}{\sqrt{52} \times \sqrt{76}} = \frac{10}{\sqrt{247}} \]

D. \(C_3^1 \times (C_4^1 + C_4^1 + C_4^1) = 5 \times (6 + 4 + 1) = 55 \)

E. [方法一]

\[f(5) = pf(1) + qf(2) + rf(4) \]

\[25a + 5b + c = p(a + b + c) + q(4a + 2b + c) + r(16a + 4b + c) \]

\[(p + 4q + 16r)a + (p + 2q + 4r)b + (p + q + r)c \]

\[p + 4q + 16r = 25 \]

\[p = 1 \]

\[p + 2q + 4r = 5 \]

\[q = -2 \]

\[p + q + r = 1 \]

\[r = 2 \]

[方法二]

\[f(x) = f(1)(x - 2)(x - 4) + f(2)(x - 1)(x - 4) + f(4)(x - 1)(x - 2) \]

\[(x - 2)(x - 4) + (x - 1)(x - 4) + (x - 1)(x - 2) \]

\(\Rightarrow f(5) = 1 \cdot f(1) + (-2) \cdot f(2) + 2 \cdot f(4) \)

F. 設直線 \(L \) 與 \(x \) 軸成 \(\alpha \) 角

斜角 \(\tan \alpha \)

設直線 \(M \) 與 \(x \) 軸成 \(\beta \) 角

斜角 \(\tan \beta \)

\(\therefore \) 斜角 \(\alpha = 45^\circ \)

\(\therefore \) 斜角 \(\alpha = \tan(\beta - 45^\circ) \)

\[\frac{\tan \beta - \tan(45^\circ)}{1 + \tan \beta \tan(45^\circ)} = \frac{1}{3} \]

\(\therefore \) 距離 \(L : y = \frac{1}{3}(x - 4) \Rightarrow x = 3y + 1 \)

G. 圓心為 \(C(4, 6), \quad r = \sqrt{5} \)

求 \(\sqrt{(x - 2)^2 + (y - 5)^2} \) 的最小值

視 \(P(x, y), \quad Q(2 + t, 2 - t) \) 設 \(\sqrt{(x - 2)^2 + (y - 5)^2} \)

\(P \) 為週上動點， \(Q \) 為 \(L : x = 2y + 4 \) 的動點

\[\text{最小值} = d(C, L) - r = \frac{|4 - 12 - 4|}{\sqrt{2}} = 3 \sqrt{5} \]

第 2 頁共 2 頁