大學入學考試中心
104 學年度學科能力測驗試題
數學考科

—作答注意事項—

考試時間：100 分鐘
題型題數：單選題 4 項，多選題 6 項，選填題第 A 至 J 項共 10 項
作答方式：用 2B 鉛筆在「答案卡」上作答；更正時，應以橡皮擦擦拭，切勿
使用修正液（帶）。未依規定畫記答案卡，致機器掃描無法辨識答
案者，其後果由考生自行承擔。
選填題作答說明：選填題的題號是 A，B，C，……，而答案的格式每題可能
不同，考生必須依各題的格式填答，且每一個列號只能在一
個格子畫記。請仔細閱讀下面的例子。

例：若第 B 題的答覆格式是 \(\frac{18}{19} \)，而依題意計算出來的答案是 \(\frac{3}{8} \)，則考生
必須分別在答案卡上的第 18 列的 3 與第 19 列的 8 畫記，如：

\[
\begin{array}{cccccccc}
18 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & - \pm \\
19 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & - \pm \\
\end{array}
\]

例：若第 C 題的答覆格式是 \(\frac{20}{21} \)，而答案是 \(\frac{-7}{50} \)，則考生必須分別在答案
卡的第 20 列的 20 與第 21 列的 7 畫記，如：

\[
\begin{array}{cccccccc}
20 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & - \pm \\
21 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & - \pm \\
\end{array}
\]

※試題後附有參考公式及可能用到的數值
第壹部分：選擇題（占 50 分）
一、單選題（占 20 分）

說明：第1題至第4題，每題有5個選項，其中只有一個是正確或最適當的選項，請在答案卡之「選擇（填）題答案區」各題答對者，得5分；答錯、未作答或畫記多於一個選項者，該題以零分計算。

1. 每週同一時間點記錄某植物的成長高度，連續五週的數據為 $a_1=1, a_2=2, a_3=6, a_4=15, a_5=31$。
 請問此成長高度數列滿足下列選項中哪一個式子？
 (1) $a_{t+1} = 3a_t - 1, \ t = 1, 2, 3, 4$
 (2) $a_t = t!, \ t = 1, 2, 3, 4, 5$
 (3) $a_{t+1} = a_t + t^2, \ t = 1, 2, 3, 4$
 (4) $a_t = 2^t - 1, \ t = 1, 2, 3, 4, 5$
 (5) $a_{t+1} = ta_t + 1, \ t = 1, 2, 3, 4$

2. 第1天獲得1元、第2天獲得2元、第3天獲得4元、第4天獲得8元，依此每天所獲得的錢為前一天的兩倍，如此進行到第30天，試問這30天所獲得的錢，總數最接近下列哪一個選項？
 (1) 10,000元
 (2) 1,000,000元
 (3) 100,000,000元
 (4) 1,000,000,000元
 (5) 1,000,000,000,000元

3. 有兩組供機器運作的配件A、B，其單獨發生故障的機率分別為0.1、0.15。只
 有當A、B都發生故障時，此機器才無法運作。A、B兩配件若用串接方式，前面
 故障會導致後面故障，但若後面故障則不會影響前面的故障情形；若用並列方
 式，則故障情形互不影響。若考慮以下三種情形：
 (一) 將B串接於A之後
 (二) 將A串接於B之後
 (三) 將A、B獨立並列
 在情況(一)、(二)、(三)之下，機器無法運作的機率分別為 p_1, p_2, p_3。
 請選出正確的選項。
 (1) $p_1 > p_2 > p_3$
 (2) $p_2 > p_1 > p_3$
 (3) $p_3 > p_2 > p_1$
 (4) $p_1 > p_1 > p_2$
 (5) $p_1 = p_2 > p_3$
4. 一線性規劃問題的可行解區域為坐標平面上的正八邊形 $ABCDEFGH$ 及其內部，如右圖。已知目標函數 $ax + by + 3$（其中 a, b 為實數）的最大值只發生在 B 點。請問當目標函數改為 $3 - bx - ay$ 時，最大值會發生在哪一點？

(1) A (2) B (3) C (4) D (5) E

二、多選題（占 30 分）

說明：第 5 題至第 10 題，每題有 5 個選項，其中至少有一個是正確的選項，請將正確選項畫記在答案卡之「選擇（填）題答案區」。各題之選項獨立判定，所有選項均答對者，得 5 分；答錯 1 個選項者，得 3 分；答錯 2 個選項者，得 1 分；答錯多於 2 個選項或所有選項均未作答者，該題以零分計算。

5. 小明參加某次路跑 10 公里組的比賽，下表為小明手錶所記錄之各公里的完成時間、平均心率及步數：

<table>
<thead>
<tr>
<th></th>
<th>完成時間</th>
<th>平均心率</th>
<th>步數</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一公里</td>
<td>5:00</td>
<td>161</td>
<td>990</td>
</tr>
<tr>
<td>第二公里</td>
<td>4:50</td>
<td>162</td>
<td>1000</td>
</tr>
<tr>
<td>第三公里</td>
<td>4:50</td>
<td>165</td>
<td>1005</td>
</tr>
<tr>
<td>第四公里</td>
<td>4:55</td>
<td>162</td>
<td>995</td>
</tr>
<tr>
<td>第五公里</td>
<td>4:40</td>
<td>171</td>
<td>1015</td>
</tr>
<tr>
<td>第六公里</td>
<td>4:41</td>
<td>170</td>
<td>1005</td>
</tr>
<tr>
<td>第七公里</td>
<td>4:35</td>
<td>173</td>
<td>1050</td>
</tr>
<tr>
<td>第八公里</td>
<td>4:35</td>
<td>181</td>
<td>1050</td>
</tr>
<tr>
<td>第九公里</td>
<td>4:40</td>
<td>171</td>
<td>1050</td>
</tr>
<tr>
<td>第十公里</td>
<td>4:34</td>
<td>188</td>
<td>1100</td>
</tr>
</tbody>
</table>

在這 10 公里的比賽過程，請依據上述數據，選出正確的選項。

(1) 由每公里的平均心率得知小明最高心率為 188
(2) 小明此次路跑，每步距離的平均小於 1 公尺
(3) 每公里完成時間和每公里平均心率的相關係數為正相關
(4) 每公里步數和每公里平均心率的相關係數為正相關
(5) 每公里完成時間和每公里步數的相關係數為負相關
6. 設 \(f(x) \) 是首項係數為 1 的實係數二次多項式。請選出正確的選項。
 (1) 若 \(f(2) = 0 \)，則 \(x - 2 \) 可整除 \(f(x) \)
 (2) 若 \(f(2) = 0 \)，則 \(f(x) \) 為整係數多項式
 (3) 若 \(f(\sqrt{2}) = 0 \)，則 \(f(-\sqrt{2}) = 0 \)
 (4) 若 \(f(2i) = 0 \)，則 \(f(-2i) = 0 \)
 (5) 若 \(f(2i) = 0 \)，則 \(f(x) \) 為整係數多項式

7. 坐標平面上，在函數圖形 \(y = 2^x \) 上，標示 \(A, B, C, D \) 四個點，其 \(x \) 坐標分別為
 \(-1, 0, 1, 2\)。請選出正確的選項。
 (1) 點 \(B \) 落在直線 \(AC \) 下方
 (2) 在直線 \(AB \)，直線 \(BC \)，直線 \(CD \) 中，以直線 \(CD \) 的斜率最大
 (3) \(A, B, C, D \) 四個點，以點 \(B \) 最靠近 \(x \) 軸
 (4) 直線 \(y = 2x \) 與 \(y = 2^x \) 的圖形有兩個交點
 (5) 點 \(A \) 與點 \(C \) 對稱於 \(y \) 軸

8. 坐標平面上有一雙曲線，其漸近線為 \(x - y = 0 \) 和 \(x + y = 0 \)。關於此雙曲線的性質，
 請選出正確的選項。
 (1) 此雙曲線的方程式為 \(\frac{x^2}{r_1^2} - \frac{y^2}{r_2^2} = 1 \) 或 \(\frac{x^2}{r_1^2} - \frac{y^2}{r_2^2} = -1 \)，其中 \(r \) 為非零實數
 (2) 此雙曲線的貫軸長等於共軸軸長
 (3) 若點 \((a, b)\) 為此雙曲線在第一象限上一點，則當 \(a > 1000 \) 時，\(|a - b| < 1\)
 (4) 若點 \((a, b), (a', b')\) 為此雙曲線在第一象限上兩點且 \(a < a' \)，則 \(b < b' \)
 (5) 此雙曲線同時對稱於 \(x \) 軸與 \(y \) 軸

9. 如圖，以 \(M \) 為圓心，\(MA = 8 \) 為半徑畫圓，\(AE \) 為該圓的直徑，\(B, C, D \) 三點皆
 在圓上，且 \(\overrightarrow{AB} = \overrightarrow{BC} = \overrightarrow{CD} = \overrightarrow{DE} \)。若 \(\overrightarrow{MD} = 8(\cos(\theta + 90^\circ), \sin(\theta + 90^\circ)) \)。請選出正確的選項。
 (1) \(\overrightarrow{MA} = 8(\cos\theta, \sin\theta) \)
 (2) \(\overrightarrow{MC} = 8(\cos(\theta + 45^\circ), \sin(\theta + 45^\circ)) \)
 (3) \((\text{內積}) \overrightarrow{MA} \cdot \overrightarrow{MA} = 8 \)
 (4) \((\text{內積}) \overrightarrow{MB} \cdot \overrightarrow{MD} = 0 \)
 (5) \(\overrightarrow{BD} = 8(\cos\theta + \cos(\theta + 90^\circ), \sin\theta + \sin(\theta + 90^\circ)) \)
104年學測
數學考科

第4頁
共7頁

10. 某一班共有45人，問卷調查有手機與平板電腦的人數。從統計資料顯示此班有35人有手機，而有24人有平板電腦。設：
A為同時有手機與平板電腦的人數
B為有手機，但沒有平板電腦的人數
C為沒有手機，但有平板電腦的人數
D為沒有手機，也沒有平板電腦的人數
請選出恆成立的不等式選項。
(1) A > B (2) A > C (3) B > C (4) B > D (5) C > D

第2部分：選填題（占50分）

說明：1. 第A至J題，將答案畫記在答案卡之「選擇（填）題答案區」所標示的列號（11–37）。
2. 每題完全答對給5分，答錯不倒扣，未完全答對不給分。

A. 如圖，老王在平地點A測得遠方山頂點P的仰角為13°。老王朝著山的方向前進37公丈後來到點B，再測得山頂點P的仰角為15°。則山高約為⑪⑫公丈。
（四舍五入至個位數，\tan13° \approx 0.231，\tan15° \approx 0.268）

B. 不透明袋中有3白3紅共6個球，球大小形狀相同，僅顏色相異。甲、乙、丙、丁、戊5人依甲第一、乙第二、……、戊第五的次序，從袋中各取一球，取後不放回。試問在甲、乙取出不同色球的條件下，戊取得紅球的機率為⑬⑭。（化為最簡分數）

C. 小燦預定在陽台上種植玫瑰、百合、菊花和向日葵等四種盆栽。如果陽台上的空間最多能種8盆，可以不必種滿，並且每種花至少一盆，則小燦買盆栽的方法共有⑮⑯種。
D. 平面 \(x - y + z = 0\) 與三平面 \(x = 2\), \(x - y = -2\), \(x + y = 2\) 分別相交所得的三直線可圍成一個三角形。此三角形之周長化成最簡根式，可表為 \(a\sqrt{b} + c\sqrt{d}\)，其中 \(a, b, c, d\) 為正整數且 \(b < d\)，則 \(a = ⑰\), \(b = ⑱\), \(c = ⑲\), \(d = ⑳\)。

E. 坐標平面上，直線 \(L_1\) 與 \(L_2\) 的方程式分別為 \(x + 2y = 0\) 與 \(3x - 5y = 0\)。為了確定平面上某一固定點 \(P\) 的坐標，從 \(L_1\) 上的一點 \(Q_1\) 偵測得向量 \(\overrightarrow{QP} = (-7, 9)\)，再從 \(L_2\) 上的點 \(Q_2\) 偵測得向量 \(\overrightarrow{QP} = (-6, -8)\)，則 \(P\) 點的坐標為 (⑳, ㉒)。

F. 小華準備向銀行貸款 3 百萬元當做創業基金，其年利率為 3%，約定三年期滿一次還清貸款的本利和。銀行貸款一般以複利（每年複利一次）計息還款，但給小華創業優惠改以單利計息還款。試問在此優惠下，小華在三年期滿還款時可以比一般複利計息少繳 ㉓ ㉔ ㉕ ㉖ 元。

G. 某一公司，有 A、B、C 三個營業據點，開始時各有 36 位營業員，為了讓營業員了解各據點業務狀況，所以進行兩次調動。每次調動都是：
將當時 A 據點營業員中的 1/6 調到 B 據點，1/6 調到 C 據點；
將當時 B 據點營業員中的 1/6 調到 A 據點，1/3 調到 C 據點；
將當時 C 據點營業員中的 1/6 調到 A 據點，1/6 調到 B 據點。
則兩次的調動後，C 據點有 ㉗ ㉘ 位營業員。
H. 有一底面為正方形的四角錐，其展開圖如下圖所示，其中兩側面的三角形邊
長為3, 4, 5，則此角錐的體積為 \(\frac{29 \sqrt{31}}{3} \)。（化為最簡根式）

I. 在空間中，一個斜面的「坡度」定義為斜面與水平面夾角 \(\theta \) 的正切值 \(\tan \theta \)。若
一金字塔（底部為一正方形，四個斜面為等腰三角形）的每一個斜面的坡度皆
為 \(\frac{2}{5} \)，如圖，則相鄰斜面的夾角的餘弦函數的絕對值為 \(\frac{12}{13} \)。（化為最簡分數）

J. 下圖為汽車迴轉示意圖。汽車迴轉時，將方向盤轉動到極限，以低速讓汽車進
行轉向圓周運動，汽車轉向時所形成的圓周的半徑即是迴轉半徑，如圖中的 \(BC \)
即是。已知在低速前進時，圖中A處的輪胎行進方向與 \(AC \) 垂直，B處的輪胎行
進方向與 \(BC \) 垂直。在圖中，已知軸距 \(AB \) 為 2.85 公尺，方向盤轉到極限時，輪
子方向偏了 28 度，試問此車的迴轉半徑 \(BC \) 為 \(\frac{36}{37} \) 公尺。（小數點後前一位
以下四捨五入， \(\sin 28^\circ \approx 0.4695 \)， \(\cos 28^\circ \approx 0.8829 \)）
參考公式及可能用到的數值

1. 首項為 a，公差為 d 的等差數列前 n 項之和為 $S = \frac{n(2a + (n - 1)d)}{2}$

首項為 a，公比為 $r \ (r \neq 1)$ 的等比數列前 n 項之和為 $S = \frac{a(1 - r^n)}{1 - r}$

2. 三角函數的和角公式：
 \[
 \sin(A+B) = \sin A \cos B + \cos A \sin B \\
 \cos(A+B) = \cos A \cos B - \sin A \sin B \\
 \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
 \]

3. $\triangle ABC$ 的正弦定理：
 \[
 \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \quad (R \text{為}\triangle ABC\text{外接圓半徑})
 \]

$\triangle ABC$ 的餘弦定理：
 $c^2 = a^2 + b^2 - 2ab \cos C$

4. 一維數據 $X: x_1, x_2, ..., x_n$，算術平均數 $\mu_X = \frac{1}{n}(x_1 + x_2 + ... + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$
 標準差 $\sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)^2} = \sqrt{\frac{1}{n} ((\sum_{i=1}^{n} x_i^2) - n\mu_X^2)}$

5. 二維數據 $(X,Y):(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$，相關係數 $r_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \mu_X)(y_i - \mu_Y)}{n\sigma_X\sigma_Y}$
 迴歸直線（最適合直線）方程式 $y - \mu_Y = r_{X,Y} \frac{\sigma_Y}{\sigma_X}(x - \mu_X)$

6. 參考數值：$\sqrt{2} \approx 1.414, \sqrt{3} \approx 1.732, \sqrt{5} \approx 2.236, \sqrt{6} \approx 2.449, \pi \approx 3.142$

7. 對數值：$\log_{10} 2 \approx 0.3010, \log_{10} 3 \approx 0.4771, \log_{10} 5 \approx 0.6990, \log_{10} 7 \approx 0.8451$

8. 角錐體積 $= \frac{1}{3}$ 底面積 \times 高