大學入學考試中心
九十六學年度學科能力測驗試題
數學考科

—作答注意事項—

考試時間：100 分鐘
題型題數：單選題 5 項，多選題 6 項，選填題第 A 至 I 項共 9 項
作答方式：

• 用 2B 鉛筆在「答案卡」上劃記，修正時應以橡皮擦拭，切勿使用修正液
• 答錯不倒扣

作答說明：在答案卡適當位置選出數值或符號。請仔細閱讀下面的例子。

（一）填答選擇題時，只用 1, 2, 3, 4, 5 等五個格子，而不需要用到−, ±, 以及 6, 7, 8, 9, 0 等格子。
例：若第 1 題的選項為(1)3 (2)5 (3)7 (4)9 (5)11，而正確的答案為 7，亦即選項(3)時，考生要在答案卡第 1 列的 3 劃記(注意不是 7)，如：

<table>
<thead>
<tr>
<th>解答欄</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>☐</td>
<td>±</td>
</tr>
</tbody>
</table>

例：若多選題第 10 題的正確選項為(1)與(3)時，考生要在答案卡的第 10 列的 1 與 3 劃記，如：

<table>
<thead>
<tr>
<th>解答欄</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>☐</td>
<td>±</td>
</tr>
</tbody>
</table>

（二）選填題的題號是 A, B, C，……，而答案的格式每題可能不同，考生必須依各題的格式填答，且每一個列號只能在一個格子劃記。

例：若第 B 題的答題格式是 \(\frac{18}{19} \)，而題意計算出來的答題是 \(\frac{3}{8} \)，則考生必須分別在答案卡上的第 18 列的 3 與第 19 列的 8 劃記，如：

<table>
<thead>
<tr>
<th>解答欄</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>☐</td>
<td>±</td>
</tr>
<tr>
<td>19</td>
<td>☐</td>
<td>±</td>
</tr>
</tbody>
</table>

例：若第 C 題的答題格式是 \(\frac{60}{50} \)，而答題是 \(\frac{7}{50} \)，則考生必須分別在答案卡的第 20 列的 7 與第 21 列的 7 劃記，如：

<table>
<thead>
<tr>
<th>解答欄</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>☐</td>
<td>±</td>
</tr>
<tr>
<td>21</td>
<td>☐</td>
<td>±</td>
</tr>
</tbody>
</table>

※試題後附有參考公式及可能用到的對數值與參考數值
第 1 頁
共 7 頁

第一部分：選擇題（佔 55 分）

壹、單選題（佔 25 分）

說明：第 1 至 5 題，每題選出最適當的一個選項，劃記在答案卡之「解答欄」，每題答對得 5 分，答錯不倒扣。

1.設 \(f(x) = ax^3 - bx + 3x - \sqrt{2} \)，其中 \(a, b \) 為非零實數，則 \(f(5) - f(-5) \) 之值為
 (1) –30 (2) 0 (3) \(2\sqrt{2} \) (4) 30 (5) 無法確定(與 \(a, b \) 有關)

2. 試問共有多少個正整數 \(n \) 使得坐標平面上通過點 \(A(-n, 0) \) 與點 \(B(0, 2) \) 的直線亦通過點 \(P(7, k) \)，
 其中 \(k \) 為某一正整數？
 (1) 2 個
 (2) 4 個
 (3) 6 個
 (4) 8 個
 (5) 無窮多個

3. 設某沙漠地區某一段時間的溫度函數為 \(f(t) = -t^2 + 10t + 11 \)，其中 \(1 \leq t \leq 10 \) ，則這段時間內該地
 區的最大溫差為
 (1) 9 (2) 16 (3) 20 (4) 25 (5) 36

4. 坐標平面上方程式 \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \) 的圖形與 \(\frac{(x+1)^2}{16} - \frac{y^2}{9} = 1 \) 的圖形共有幾個交點？
 (1) 1 個 (2) 2 個 (3) 3 個 (4) 4 個 (5) 0 個
5. 關於坐標平面上函數 \(y = \sin x \) 的圖形和 \(y = \frac{x}{10\pi} \) 的圖形之交點個數，下列哪一個選項是正確的？

(1) 交點的個數是無窮多
(2) 交點的個數是奇數且大於 20
(3) 交點的個數是奇數且小於 20
(4) 交點的個數是偶數且大於或等於 20
(5) 交點的個數是偶數且小於 20

貳、多選題（佔 30 分）

說明：第 6 至 11 題，每題的五個選項各自獨立，其中至少有一個選項是正確的，選出正確選項劃記在答案卡之「解答欄」。每題皆不倒扣，五個選項全部答對者得 5 分，只錯一個選項可得 2.5 分，錯兩個或兩個以上選項不給分。

6. 若 \(\Gamma = \{ z | z \text{為複數且} |z - 1| = 1 \} \)，則下列哪些點會落在圖形 \(\Omega = \{ w | w = iz, z \in \Gamma \} \) 上？
 (1) \(2i \) (2) \(-2i \) (3) \(1+i \) (4) \(1-i \) (5) \(-1+i \)

7. 坐標平面上有相異兩點 \(P, Q \)，其中 \(P \) 點坐標為 \((s,t) \)。已知線段 \(\overline{PQ} \) 的中垂線 \(L \) 的方程式為 \(3x - 4y = 0 \)，試問下列哪些選項是正確的？

 (1) 向量 \(\overrightarrow{PQ} \) 與向量 \((3, -4) \) 平行

 (2) 線段 \(\overline{PQ} \) 的長度等於 \(\frac{|6s - 8t|}{5} \)

 (3) \(Q \) 點坐標為 \((t, s) \)

 (4) 過 \(Q \) 點與直線 \(L \) 平行之直線必過點 \((-s, -t) \)

 (5) 以 \(O \) 表示原點，則向量 \(\overrightarrow{OP} + \overrightarrow{OQ} \) 與向量 \(\overrightarrow{PQ} \) 的內積必為 0
8. 下列哪些選項中的矩陣經過一系列的列運算後可以化成 \[
\begin{pmatrix}
1 & 2 & 3 & 7 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 1 \\
\end{pmatrix}
\]
？

(1) \[
\begin{pmatrix}
1 & 2 & 3 & 7 \\
0 & 1 & 1 & 2 \\
0 & 2 & 3 & 5 \\
\end{pmatrix}
\]
(2) \[
\begin{pmatrix}
-1 & 3 & -1 & 0 \\
-1 & 1 & 1 & 0 \\
3 & 1 & -7 & 0 \\
\end{pmatrix}
\]
(3) \[
\begin{pmatrix}
1 & 1 & 2 & 5 \\
1 & -1 & 1 & 2 \\
1 & 1 & 2 & 5 \\
\end{pmatrix}
\]
(4) \[
\begin{pmatrix}
2 & 1 & 3 & 6 \\
-1 & 1 & 1 & 0 \\
-2 & 2 & 2 & 1 \\
\end{pmatrix}
\]
(5) \[
\begin{pmatrix}
1 & 3 & 2 & 7 \\
0 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 \\
\end{pmatrix}
\]

9. 坐標空間中，在 xy 平面上置有三個半徑為 1 的球兩兩相切，設其球心分別為 A, B, C。今將第四個半徑為 1 的球置於這三個球的上方，且與這三個球都相切，並保持穩定。設第四個球的球心為 P，試問下列哪些選項是正確的？

(1) 点 A, B, C 所在的平面和 xy 平面平行
(2) 三角形 ABC 是一個正三角形
(3) 三角形 PAB 有一邊長為 \sqrt{2}
(4) 点 P 到直線 AB 的距離為 \sqrt{5}
(5) 点 P 到 xy 平面的距離為 1 + \sqrt{3}

10. 設 a 為大於 1 的實數，考慮函數 \(f(x) = a^x \) 與 \(g(x) = \log_a x \)，試問下列哪些選項是正確的？

(1) 若 \(f(3) = 6 \)，則 \(g(36) = 6 \)
(2) \[
\frac{f(238)}{f(219)} = \frac{f(38)}{f(19)}
\]
(3) \(g(238) - g(219) = g(38) - g(19) \)
(4) 若 P, Q 為 y = g(x) 的圖形上兩相異點，則直線 PQ 之斜率必為正數
(5) 若直線 y = 5x 與 y = f(x) 的圖形有兩個交點，則直線 \(y = -\frac{1}{5} x \) 與 y = g(x) 的圖形也有兩個交點
11. 設 \(f(x) \) 為一實係數三次多項式且其最高次項係數為 1，已知 \(f(1) = 1, f(2) = 2, f(5) = 5 \)，則 \(f(x) = 0 \) 在下列哪些區間必定有實根？
(1) \((-\infty, 0)\) (2) \((0, 1)\) (3) \((1, 2)\) (4) \((2, 5)\) (5) \((5, \infty)\)

第二部分：選填題（佔 45 分）

說明：1. 第 A 至 I 題，將答案劃記在答案卡之「解答欄」所標示的列號 (12–41)。
2. 每題完全答對給 5 分，答錯不倒扣，未完全答對不給分。

A. 設實數 \(x \) 滿足 \(0 < x < 1 \)，且 \(\log_4 4 - \log_2 x = 1 \)，則 \(x = \frac{\text{12}}{\text{13}} \)。（化成最簡分數）

B. 在坐標平面上的 \(\Delta ABC \) 中，\(P \) 為 \(BC \) 邊之中點，\(Q \) 在 \(AC \) 邊上且 \(AQ = 2QC \)。已知 \(\overrightarrow{PA} = (4, 3) \)，\(\overrightarrow{PQ} = (1, 5) \)，則 \(BC = (\text{14}, \text{15}), (\text{16}, \text{17}) \)。

C. 在某項才藝競賽中，為了避免評審個人主觀影響參賽者成績太大，主辦單位規定：先將 15 位評審給同一位參賽者的成績求得算術平均數，再將與平均數相差超過 15 分的評審成績剔除後重新計算平均值做為此參賽者的比賽成績。現在有一位參賽者所獲 15 位評審的平均成績為 76 分，其中有三位評審給的成績 92、45、55 應剔除，則這個參賽者的比賽成績為 \(\text{18}, \text{19} \) 分。
D. 某巨蛋球場 E 區共有 25 排座位，此區每一排都比其前一排多 2 個座位。小明坐在正中間那一排(即第 13 排)，發現此排共有 64 個座位，則此球場 E 區共有 __20__ 21 __22__ 23__ 個座位。

E. 設 P, A, B 爲坐標平面上以原點為圓心的單位圓上三點，其中 P 點坐標為 (1, 0)，A 點坐標為 (\(-\frac{12}{13}, \frac{5}{13}\))，且 \(\angle APB \) 爲直角，則 B 點坐標為 (\(\frac{24}{26}, \frac{25}{27}\), \(\frac{28}{30}, \frac{29}{31}\))。(化成最簡分數)

F. 某公司生產多種款式的「阿民」公仔，各種款式只是球帽、球衣或球鞋顏色不同。其中球帽共有黑、灰、紅、藍四種顏色，球衣有白、綠、藍三種顏色，而球鞋有黑、白、灰三種顏色。公司決定紅色的球帽不搭配灰色的鞋子，而白色的球衣則必須搭配藍色的帽子，至於其他顏色間的搭配就沒有限制。在這些配色的要求之下，最多可有 __32__ 33__ 種不同款式的「阿民」公仔。
G. 摸彩箱裝有若干編號為 1, 2, ..., 10 的彩球，其中各種編號的彩球數目可能不同。今從中隨機摸取一球，依據所取球的號數給予若干報酬。現有甲、乙兩案：甲案為當摸得彩球的號數為 k 時，其所獲報酬同為 k；乙案為當摸得彩球的號數為 k 時，其所獲報酬為 11−k (k = 1, 2, ..., 10)。已知依甲案每摸取一球的期望值為 $\frac{67}{14}$，則依乙案每摸取一球的期望值為 $\frac{34}{35}$ (化成最簡分數)。

H. 坐標平面上有一以點 V (0, 3) 爲頂點、F (0, 6) 爲焦點的拋物線。設 P (a, b) 爲此拋物線上一點，Q (a, 0) 爲 P 在 x 軸上的投影，滿足 $\angle FPQ = 60^\circ$，則 $b = \frac{38}{39}$。

I. 在 $\triangle ABC$ 中，M 爲 BC 邊之中點，若 $AB = 3$，$AC = 5$，且 $\angle BAC = 120^\circ$，則 $\tan \angle BAM = \frac{40}{\sqrt{41}}$。 (化成最簡根式)
參考公式及可能用到的數值

1. 一元二次方程式 $ax^2 + bx + c = 0$ 的公式解：$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

2. 平面上兩點 $P_1(x_1,y_1)$，$P_2(x_2,y_2)$ 間的距離為 $P_1P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

3. 通過 (x_1,y_1) 與 (x_2,y_2) 的直線斜率 $m = \frac{y_2 - y_1}{x_2 - x_1}$，$x_2 \neq x_1$

4. 等比數列 (ar^{n-1}) 的前 n 項之和 $S_n = \frac{a \cdot (1 - r^n)}{1 - r}$，$r \neq 1$.

5. 三角函數的和角公式：
 \[
 \sin(A + B) = \sin A \cos B + \sin B \cos A
 \]
 \[
 \tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}
 \]

6. $\triangle ABC$ 的正弦定理：
 \[
 \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}
 \]
 $\triangle ABC$ 的餘弦定理：
 \[
 c^2 = a^2 + b^2 - 2ab \cos C
 \]

7. 棣美弗定理：設 $z = r(\cos \theta + i \sin \theta)$，則 $z^n = r^n(\cos n\theta + i \sin n\theta)$，$n$ 為一正整數

8. 算術平均數：
 \[
 M(\overline{X}) = \frac{1}{n}(x_1 + x_2 + \cdots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i
 \]
 (樣本) 標準差：
 \[
 S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{X})^2} = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\overline{X}^2 \right)}
 \]

9. 參考數值：$\sqrt{2} \approx 1.414$；$\sqrt{3} \approx 1.732$；$\sqrt{5} \approx 2.236$；$\sqrt{6} \approx 2.449$；$\pi \approx 3.142$

10. 對數值：$\log_{10} 2 \approx 0.3010$，$\log_{10} 3 \approx 0.4771$，$\log_{10} 5 \approx 0.6990$，$\log_{10} 7 \approx 0.8451$