第壹部分：選擇題（占 60 分）
一、單選題（占 30 分）

說明：第 1 至 6 題，每題有 5 個選項，其中只有一個是正確或最適當的選項，請畫記在答案卡之「選擇（填）題答案區」。各題答對者，得 5 分；答錯、未作答或畫記多於一個選項者，該題以零分計算。

1. 學校規定上學期成績需同時滿足以下兩項要求，才有資格參選模範生。
 一、國文成績或英文成績 70 分（含）以上；
 二、數學成績及格。
 已知小文上學期國文 65 分而且他不符合參選模範生資格。請問下列哪一個選項的推論是正確的？
 (1) 小文的英文成績未達 70 分
 (2) 小文的數學成績不及格
 (3) 小文的英文成績 70 分以上但數學成績不及格
 (4) 小文的英文成績未達 70 分且數學成績不及格
 (5) 小文的英文成績未達 70 分或數學成績不及格

解：～(一且二) ≡～一或～二，其中
 ～一 ≡～(國文成績或英文成績 70 分(含)以上) ≡ 國文成績未達 70 分且英文成績未達 70 分
 ～二 ≡～(數學成績及格) ≡ 數學成績不及格
 □ (5)滿足
 答：(5)

2. 令 \(a = 2.6^{10} - 2.6^9 \), \(b = 2.6^{11} - 2.6^{10} \), \(c = \frac{2.6^{11} - 2.6^9}{2} \)。請選出正確的大小關係。

 (1) \(a > b > c \) （2）\(a > c > b \) （3）\(b > a > c \) （4）\(b > c > a \) （5）\(c > b > a \)

解：\(a = 2.6^{10} - 2.6^9 = 2.6^9(2.6 - 1) = 2.6^9 \times 1.6 \)
 \(b = 2.6^{11} - 2.6^{10} = 2.6^{10}(2.6 - 1) = 2.6^{10} \times 1.6 = 2.6^9 \times 4.16 \)
 \(c = \frac{2.6^{11} - 2.6^9}{2} = \frac{2.6^9 \times (2.6^2 - 1)}{2} = \frac{2.6^9 \times 5.76}{2} = 2.6^9 \times 2.88 \)
 □ 得知 \(b > c > a \)
 答：(4)

3. 袋子裡有 3 顆白球，2 顆黑球，由甲、乙、丙三人依序各抽取 1 顆球，抽取後不放回。若每顆球被取出的機會相等，請問在甲和乙抽到相同顏色球的條件下，丙抽到白球之條件機率為何？

 (1) \(\frac{1}{3} \) （2）\(\frac{5}{12} \) （3）\(\frac{1}{2} \) （4）\(\frac{3}{5} \) （5）\(\frac{2}{3} \)

解：(1) 甲和乙抽到相同顏色球：甲乙(白) + 甲乙(黑) = \(\frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{1}{4} = \frac{2}{5} \)

(2) 甲(白) →乙(白) →丙(白)：\(\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} = \frac{1}{10} \), 甲(黑) →乙(黑) →丙(白)：\(\frac{2}{5} \times \frac{1}{4} \times \frac{3}{3} = \frac{1}{10} \)
\[\Box P(\text{丙(白)|甲和乙抽到相同颜色}) = \frac{P(\text{甲乙同色且丙白色})}{P(\text{甲乙同色})} = \frac{\frac{1}{10} + \frac{1}{10}}{\frac{2}{5}} = \frac{1}{2} \]

答：(3)

4. 已知以下各項選項資料的迴歸直線(最適合直線)皆相同且皆為負相關，請選出相關係數最小的選項。

(1) \[\begin{array}{c|c|c|c}
 x & 2 & 3 & 5 \\
 y & 1 & 13 & 1 \\
\end{array} \]

(2) \[\begin{array}{c|c|c|c}
 x & 2 & 3 & 5 \\
 y & 3 & 10 & 2 \\
\end{array} \]

(3) \[\begin{array}{c|c|c|c}
 x & 2 & 3 & 5 \\
 y & 5 & 7 & 3 \\
\end{array} \]

(4) \[\begin{array}{c|c|c|c}
 x & 2 & 3 & 5 \\
 y & 9 & 1 & 5 \\
\end{array} \]

(5) \[\begin{array}{c|c|c|c}
 x & 2 & 3 & 5 \\
 y & 7 & 4 & 4 \\
\end{array} \]

解 1：\(\Box \) 迴歸直線(最適合直線)皆相同，\(\Box \) 相關係數 \(r = \frac{\sum_{i=1}^{3}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{3}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{3}(y_i - \bar{y})^2}} \) 中，

\[\frac{\sum_{i=1}^{3}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{3}(x_i - \bar{x})^2}} \] 相同，\(\Rightarrow \) 僅比較 \(\sqrt{\sum_{i=1}^{3}(y_i - \bar{y})^2} \) 大小即可

即(1) \(\sqrt{96} \), (2) \(\sqrt{38} \), (3) \(\sqrt{8} \), (4) \(\sqrt{32} \), (5) \(\sqrt{5} \)，且皆負相關，故(5)的相關係數最小

解 2：實際計算

\[\begin{array}{c|c|c|c|c|c|c}
 X_i & X_i - \bar{x} & (X_i - \bar{x})^2 & (1) & (2) & (3) & (4) & (5) \\
\hline
 2 & -4/3 & 16/9 & 1 & -4 & 16 & 3 & -2 & 4 & 5 & 0 & 0 & 9 & 4 & 16 & 7 & 2 & 4 \\
 3 & -1/3 & 1/9 & 13 & 8 & 64 & 10 & 5 & 25 & 7 & 2 & 4 & 1 & -4 & 16 & 4 & -1 & 1 \\
 5 & 5/3 & 25/9 & 1 & -4 & 16 & 2 & -3 & 9 & 3 & -2 & 4 & 5 & 0 & 0 & 4 & -1 & 1 \\
 \bar{x} = 10/3 & 0 & 42/9 & 5 & 0 & 96 & 5 & 0 & 38 & 5 & 0 & 8 & 5 & 0 & 32 & 5 & 0 & 5 \\
\end{array} \]

\[r = \frac{\sum_{i=1}^{3}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{3}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{3}(y_i - \bar{y})^2}} \]

(1) \(r = \frac{-4}{\sqrt{96}} \), (2) \(r = \frac{-4}{\sqrt{38}} \), (3) \(r = \frac{-4}{\sqrt{8}} \), (4) \(r = \frac{-4}{\sqrt{32}} \), (5) \(r = \frac{-4}{\sqrt{5}} \)

故(5)的相關係數最小

答：(5)
5. 將 24 項雞蛋分裝到紅、黃、綠的三個籃子。每個籃子都要有雞蛋，且黃、綠兩個籃子裡都裝奇數顆。請選出分裝的方法數。

(1) 55 (2) 66 (3) 132 (4) 198 (5) 253

解：設紅、黃、綠各裝 r, y, g 個，且 $r = a + 1, y = 2b + 1, g = 2c + 1, a, b, c$ 為非負整數

$\therefore r + y + g = 24 \Rightarrow (a + 1) + (2b + 1) + (2c + 1) = 24$，得 $a + 2(b + c) = 21$ 且 a 為奇數

<table>
<thead>
<tr>
<th>a</th>
<th>21</th>
<th>19</th>
<th>17</th>
<th>15</th>
<th>13</th>
<th>11</th>
<th>9</th>
<th>7</th>
<th>5</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0</td>
<td>1~0</td>
<td>2~0</td>
<td>3~0</td>
<td>4~0</td>
<td>5~0</td>
<td>6~0</td>
<td>7~0</td>
<td>8~0</td>
<td>9~0</td>
<td>10~0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0~1</td>
<td>0~2</td>
<td>0~3</td>
<td>0~4</td>
<td>0~5</td>
<td>0~6</td>
<td>0~7</td>
<td>0~8</td>
<td>0~9</td>
<td>0~10</td>
</tr>
</tbody>
</table>

方法數共有 $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = 66$

答：(2)

6. 莎韻觀測遠方等速率垂直上升的熱氣球。在上午 10:00 熱氣球的仰角為 30^0，到上午 10:10

仰角變為 34^0。請利用下表判斷到上午 10:30 時，熱氣球的仰角最接近下列哪一個度數？

<table>
<thead>
<tr>
<th>θ</th>
<th>30^0</th>
<th>34^0</th>
<th>39^0</th>
<th>40^0</th>
<th>41^0</th>
<th>42^0</th>
<th>43^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin \theta$</td>
<td>0.500</td>
<td>0.559</td>
<td>0.629</td>
<td>0.643</td>
<td>0.656</td>
<td>0.669</td>
<td>0.682</td>
</tr>
<tr>
<td>$\cos \theta$</td>
<td>0.866</td>
<td>0.829</td>
<td>0.777</td>
<td>0.766</td>
<td>0.755</td>
<td>0.743</td>
<td>0.731</td>
</tr>
<tr>
<td>$\tan \theta$</td>
<td>0.577</td>
<td>0.675</td>
<td>0.810</td>
<td>0.839</td>
<td>0.869</td>
<td>0.900</td>
<td>0.933</td>
</tr>
</tbody>
</table>

(1) 39^0 (2) 40^0 (3) 41^0 (4) 42^0 (5) 43^0

解：(1) 根據題意，等速率垂直上升，距離與時間成正比

$\Rightarrow \frac{AB}{BC} = k, \text{且 } OP = \sqrt{3}x, PA = x$，如右圖

(2) $\tan 34^0 = \frac{k + x}{\sqrt{3}x} = 0.675$，得 $k = \frac{0.675 - \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}} \approx 0.87$

$\Rightarrow \angle COP = 41^0$

答：(3)

二、多選題 (占 30 分)

說明：第 7 至 12 題，每題有 5 個選項，其中至少有一個是正確的選項，請將正確選項畫記在答
案卡之「選擇(填)題答案區」，各題之選項獨立判定，所有選項均答對者，得 5 分；答對
1 個選項者，得 3 分；答錯 2 個選項者，得 1 分；答錯多於 2 個選項或所有選項均未作
答者，該題以零分計算。

CJT 102 - 3
102 年學測
7. 設 \(n \) 為正整數，符號 \(\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \) 代表矩陣 \(\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \) 自乘 \(n \) 次。令 \(\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^{n} = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix} \)，請選出正確的選項。

(1) \(a_2 = 1 \)
(2) \(a_1, a_2, a_3 \) 為等比數列
(3) \(d_1, d_2, d_3 \) 為等比數列
(4) \(b_1, b_2, b_3 \) 為等差數列
(5) \(c_1, c_2, c_3 \) 為等差數列

解：當 \(n = 1 \) 時，\[
\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}
\]

當 \(n = 2 \) 時，\[
\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^2 = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}
\]

當 \(n = 3 \) 時，\[
\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^3 = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^2 \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} a_3 & b_3 \\ c_3 & d_3 \end{bmatrix}
\]

(1) \(a_2 = 1 \)，正確
(2) \(a_1 = 1, a_2 = 1, a_3 = 1 \) 是公比為 1 的等比數列，正確
(3) \(d_1 = 2, d_2 = 4, d_3 = 8 \) 是公比為 2 的等比數列，正確
(4) \(b_1 = 1, b_2 = 3, b_3 = 7 \) 不為等差數列
(5) \(c_1 = 0, c_2 = 0, c_3 = 0 \) 是公差為 0 的等差數列

答：(1)(2)(3)(5)

8. 設 \(a > 1 > b > 0 \)，關於下列不等式，請選出正確的選項。

(1) \((-a)^7 > (-a)^9\)
(2) \(b^{-9} > b^{-7}\)
(3) \(\log_{10} \frac{1}{a} > \log_{10} \frac{1}{b}\)

(4) \(\log_a 1 > \log_b 1\)
(5) \(\log_a b \geq \log_b a\)

解：(1) \((-a)^7 = - a^7, (-a)^9 = - a^9\)
⇒ \(a > 1, \quad a^7 > a^9, \quad \Rightarrow - a^7 < - a^9, \quad \text{即} (-a)^7 > (-a)^9\)

(2) \(b^{-9} = \frac{1}{b^9}, \quad b^{-7} = \frac{1}{b^7}\)

⇒ \(b > 1 > 0, \quad b^7 < b^9, \quad \frac{1}{b^7} > \frac{1}{b^9}, \quad \text{即} b^{-9} > b^{-7}\)

(3) \(\log_{10} \frac{1}{a} = - \log_{10} a, \quad \log_{10} \frac{1}{b} = - \log_{10} b, \quad \Rightarrow a > b, \quad \log_{10} a > \log_{10} b, \quad \text{即} \log_{10} \frac{1}{a} < \log_{10} \frac{1}{b}\)

(4) \(\log_a 1 = 0, \quad \log_b 1 = 0, \quad \log_a 1 = \log_b 1\)

(5) 如右圖，當 \(a, b \) 與 1 距離不等時，不等式不成立

例：取 \(a = 2, b = \frac{1}{4}, \) 則 \(\log_a \frac{1}{4} = - 2 < \log_a 2 = - \frac{1}{2}\)

答：(1)(2)
9. 設 \(a < b < c \)。已知實數系多項式函數 \(y = f(x) \) 的圖形為一開口向上的拋物線，且與 \(x \) 軸交於 \((a, 0), (b, 0)\) 點；實係數多項式函數 \(y = g(x) \) 的圖形亦為一開口向上的拋物線，且與 \(x \) 軸交於 \((b, 0), (c, 0)\) 點。請選出 \(y = f(x) + g(x) \) 的圖形可能的選項。

(1) 水平直線 (2) 和 \(x \) 軸僅交於一點的直線 (3) 和 \(x \) 軸僅無交點的拋物線 (4) 和 \(x \) 軸僅交於一點的拋物線 (5) 和 \(x \) 軸僅交於兩點的拋物線

解：設 \(y = f(x) = h(x - a)(x - b) \), \(y = g(x) = k(x - b)(x - c) \), \(h \), \(k \) 皆為正數

\[
\Rightarrow y = f(x) + g(x) = h(x - a)(x - b) + k(x - b)(x - c)
\]

\[
= (x - b)[h(x - a) + k(x - c)] = (x - b)[(h + k)x - (a + c)]
\]

令 \(f(x) + g(x) = (x - b)[(h + k)x - (a + c)] = 0 \)，得 \(x = b \) 或 \(x = \frac{a + c}{h + k} \)

(1) \(f(x) + g(x) \) 為二階函數，圖形為拋物線 (2) \(f(x) + g(x) \) 為二次函數，圖形為拋物線

(3)(4)(5)：若 \(b = \frac{a + c}{h + k} \) 時，和 \(x \) 軸交於一點的拋物線

若 \(b \neq \frac{a + c}{h + k} \) 時，和 \(x \) 軸交於兩點的拋物線

答：(4)(5)

10. 坐標平面上考慮兩點 \(Q_1(1, 0), Q_2(-1, 0) \)。在下列各方程式的圖形中，請選出其上至少有一點 \(P \) 滿足內積 \(\overrightarrow{PQ_1} \cdot \overrightarrow{PQ_2} < 0 \) 的選項。

(1) \(y = \frac{1}{2} \) (2) \(y = x^2 + 1 \) (3) \(- x^2 + 2y^2 = 1 \) (4) \(4x^2 + y^2 = 1 \) (5) \(\frac{x^2}{2} - \frac{y^2}{2} = 1 \)

解 1：代數解法

設 \(P(x, y), \overrightarrow{PQ_1}, \overrightarrow{PQ_2} = (1 - x, - y)(-1 - x, - y) = x^2 + y^2 - 1 < 0 \)，即

(1) \(y = \frac{1}{2} \) 時，代入 \(x^2 + y^2 - 1 = x^2 - \frac{3}{4} < 0 \)，此種 \(x \) 值存在

(2) \(y = x^2 + 1 \) 時，代入 \(x^2 + y^2 - 1 = x^2 + (x^2 + 1)^2 - 1 = x^4 + 3x^2 < 0 \)，此種 \(x \) 值不存在

(3) \(- x^2 + 2y^2 = 1 \) 時，若 \(x^2 = 2y^2 - 1 \) 代入 \(x^2 + y^2 - 1 = 3y^2 - 2 < 0 \)，此種 \(y \) 值存在

(4) \(4x^2 + y^2 = 1 \) 時，若 \(y^2 = 1 - 4x^2 \) 代入 \(x^2 + y^2 - 1 = -3x^2 < 0 \)，此種 \(x \) 值存在

(5) \(\frac{x^2}{2} - \frac{y^2}{2} = 1 \) 時，若 \(x^2 = y^2 + 2 \) 代入 \(x^2 + y^2 - 1 = 2y^2 + 1 < 0 \)，此種 \(y \) 值不存在
解 2：幾何解法

設 P(x, y)，
\[\overrightarrow{PQ_1} \cdot \overrightarrow{PQ_2} = (1 - x, -y)(-1 - x, -y) = x^2 + y^2 - 1 < 0, \]
即 \(x^2 + y^2 < 1 \)，其幾何意義為圓心為(0, 0)、半徑為1內部，如右圖

\[2x + 2y - 1 < 0, \]
即 \(2x + 2y < 1 \)，其幾何意義為圓心為(0, 0)、半徑為1內部，如右圖

答：(1)(3)(4)

11. 設 \(F_1, F_2 \) 為橢圓 \(\Gamma \) 的兩個焦點。\(S \) 為以 \(F_1 \) 為中心的正方形(\(S \) 的各邊可不與 \(\Gamma \) 的對稱軸平行)。
試問 \(S \) 可能有幾個頂點落在 \(\Gamma \) 上？
(1) 1 (2) 2 (3) 3 (4) 4 (5) 0

解：(1) 設(不失一般性)橢圓 \(\Gamma : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)，且 \(a^2 = b^2 + c^2 \)，\(F_1(c, 0), A(a, 0), B(0, b) \)

如圖，\(P(c, \frac{b^2}{a}) \)，且 \(\square \overline{FP} = \frac{b^2}{a}, \overline{FP} = a - c \)

(2) \[\frac{b^2}{a} - (a - c) = \frac{c(a - c)}{a} > 0, \quad \square \overline{FP} > \overline{FP} \]

可能情形有

答：(1)(2)(5)
12. 設實數組成的數列 \(\{a_n\} \) 是公比為 -0.8 的等比數列，實數組成的數列 \(\{b_n\} \) 是首項為 10 的等差數列。已知 \(a_9 > b_9 \) 且 \(a_{10} > b_{10} \)。請選出正確的選項。

(1) \(a_9 \times a_{10} < 0 \) \hspace{1cm} (2) \(b_9 > 0 \) \hspace{1cm} (3) \(b_9 > b_{10} \) \hspace{1cm} (4) \(a_9 > a_{10} \) \hspace{1cm} (5) \(a_8 > b_8 \)

解：
\(\{a_n\} : a_1, a_1(-0.8), \quad \square, \quad a_9 = a_1(-0.8)^9, \quad a_{10} = a_1(-0.8)^9 \)
\(\{b_n\} : 10, 10+d, \quad \square, \quad b_9 = 10+8d, \quad b_{10} = 10+9d \)

\(a_9 > b_9 \) 且 \(a_{10} > b_{10} \) ⇒ \(a_1(-0.8)^9 > 10+8d \) 且 \(a_1(-0.8)^9 > 10+9d \)

\(⇒ 10+9d < a_1(-0.8)^9 < (10+8d)(-0.8) \), ⇒ \(d < -\frac{18}{15.4} \approx -1.169 < 0 \)

(1) \(a_9 \times a_{10} = a_1(-0.8)^8 \times a_1(-0.8)^9 = a_1^2(-0.8)^{17} < 0 \)
(2) \(\square d < 0 \), \(\square b_9 = 10+9d \approx 10 + 9(-1.169) < 0 \)
(3) \(\square b_9 - b_{10} = (10+8d) - (10+9d) = -d > 0 \), \(\square b_9 > b_{10} \)
(4) \(a_9 = a_1(-0.8)^9, \quad a_{10} = a_1(-0.8)^9, \) 其中 \(a_1 \) 正負未知，\(\square \) 無法比較
(5) \(a_8 = a_1(-0.8)^8 < \frac{10+8d}{-0.8} = -\frac{25}{2} - 10d < -34.19 \), 又 \(b_8 = 10 + 7d < 1.8 \), \(\square \) 無法比較

答：(1)(3)

第第二部分：選填題(占 40 分)

說明：1. 第 A 至 H 題，將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(13 - 35)。

2. 每題完全答對給 5 分，答錯不倒扣，未完全答對不給分。

A. 設 \(k \) 為一整數。已知 \(\frac{k}{3} < \sqrt{31} < \frac{k+1}{3} \)，則 \(k = \square \square \)

解 1：\(\square 3\sqrt{31} = \sqrt{279} \)，\(k < \sqrt{279} < k+1 \)，且 \(k \) 為一整數，\(k+1 \) 也為整數

\(\square \sqrt{256} < \sqrt{279} < \sqrt{289} \)，即 \(16 < \sqrt{279} < 17 \)，得知 \(k = 16 \)

解 2：\(3\sqrt{31} \approx 3 \times 5.56 = 16.68 \)，\(\square k < 16.68 < k+1 \)，且 \(k \) 為一整數，得知 \(k = 16 \)

答：16

B. 設 \(a, b \) 為實數且 \((a+bi)(2+6i) = -80 \)，其中 \(i^2 = -1 \)。則 \((a, b) = (\square \square \square, \square \square \square) \)

解 1：\(a+bi = \frac{-80}{2+6i} = \frac{-80(2-6i)}{(2+6i)(2-6i)} = \frac{-80(2-6i)}{40} = -4 + 12i \)

解 2：\((a+bi)(2+6i) = (2a-6b) + (6a+2b)i = -80 \)

\(\Rightarrow \begin{cases} 2a-6b = -80 \\ 6a+2b = 0 \end{cases} \)，得 \(a = -4, b = 12 \)

答：\((a, b) = (-4, 12) \)
C. 坐標平面中 A(3, 1), B(16, b), C(19, 12) 三點共線。已知 C 不在 A, B 之間，且 AC: BC = 3:1, 則 a + b = ___.

解: 根據題意，相關位置如右:

由分點公式: \((16, b) = \frac{(a,3)+(19,12)}{1+2} = (\frac{a+38}{3}, \frac{3+24}{3})\)

x 分量: \(16 = \frac{a+38}{3}\), \(⇒ a = 10\)

y 分量: \(b = \frac{3+24}{3}\), \(⇒ b = 9\)

\(⇒ a + b = 10 + 9 = 19\)

答: \(a + b = 19\)

D. 阿德賣 100 公斤的香蕉，第一天每公斤賣 40 元; 沒賣完的部分，第二天降價為每公斤 36 元;
第三天再降價為每公斤 32 元，到第三天全部賣完，三天所得共為 3720 元。假設阿德在第三
天所賣香蕉的公斤數為 \(t\), 可算得第二天賣出香蕉的公斤數為 \(at + b\), 其中 \(a = ___, b = __________

解 1: 根據題意，第一天賣出 \([100 - (at + b) - t]\) 公斤

\(⇒40[100 - (at + b) - t] + 36(at + b) + 32t = 3720\)

\(⇒4000 - 4(at + b) - 8t = 3720\)

\(⇒(4a + 8)t + (4b - 280) = 0\), \(⇒ \begin{cases} 4a + 8 = 0 \Rightarrow a = -2 \\ 4b - 280 = 0 \Rightarrow b = 70 \end{cases}\)

解 2: 根據題意，設第一、二、三天分別賣出 \(x, y = at + b, t\) 公斤，則

\(\begin{cases} x + y + t = 100 \\ 40x + 36y + 32t = 3720 \end{cases}\), \(⇒ \begin{cases} x + y = 100 - t \\ 40x + 36y = 3720 - 32t \end{cases}\)

\(\Rightarrow \begin{cases} x = 30 + t \\ y = -2t + 70 \end{cases}\), 得 \(a = -2, b = 70\)

答: \(a = -2, b = 70\)

E. 坐標平面上，一圓與直線 \(x - y = 1\) 以及直線 \(x - y = 5\) 所截的弦長皆為 14。

則此圓的面積為 ___.

解: 設圓心為 \(O\)，半徑為 \(r\)，如右圖

兩平行線距離: \(d(x - y = 1, x - y = 5) = \frac{4}{\sqrt{2}} = 2\sqrt{2}\)

得 \(OB = \sqrt{2}\) 且 \(\square\) 弦長皆為 14，\(\square AB = 7\)

在 \(\triangle OAB\) 中, \(r^2 = (\sqrt{2})^2 + 7^2 = 51\), \(⇒\) 圓面積 = \(\pi r^2 = 51\pi\)

答: \(51\pi\)
F. 令 \(\vec{A} \) , \(\vec{B} \) 為坐標平面上兩向量。已知 \(\vec{A} \) 的長度為 1, \(\vec{B} \) 的長度為 2 且 \(\vec{A} \) 與 \(\vec{B} \) 之間的夾角為 60°。

令 \(\vec{u} = \vec{A} + \vec{B} \), \(\vec{v} = x\vec{A} + y\vec{B} \), 其中 \(x, y \) 為實數且符合 \(6 \leq x + y \leq 8 \) 及 \(-2 \leq x - y \leq 0 \),

則內積 \(\vec{u} \cdot \vec{v} \) 的最大值為

解：
(1) \(\vec{A} \cdot \vec{B} = |\vec{A}||\vec{B}|\cos60^\circ = 1 \times 2 \times \frac{1}{2} = 1 \)

(2) \(\vec{u} \cdot \vec{v} = (\vec{A} + \vec{B}) \cdot (x\vec{A} + y\vec{B}) = x|\vec{A}|^2 + (x + y)\vec{A} \cdot \vec{B} + y|\vec{B}|^2 = 2x + 5y \)

(3) \(6 \leq x + y \leq 8 \) 及 \(-2 \leq x - y \leq 0 \), 得可行解區域如右圖

頂點 \((x, y)\)：(2, 4), (3, 3), (3, 5), (4, 4)

\(\vec{u} \cdot \vec{v} = 2x + 5y \)\hspace{1em} 28 \hspace{1em} 21 \hspace{1em} 31 \hspace{1em} 28

得知 \(\vec{u} \cdot \vec{v} \) 的最大值為 31

答：31

G. 設銳角三角形 \(\triangle ABC \) 的外接圓半徑為 8。已知外接圓心到\(\overline{AB} \)的距離為 2，而到 \(\overline{BC} \) 的距離為 7，則 \(\overline{AC} = \sqrt{8^2 - 2^2} \)。化成最簡根式

解：
(1) 如圖，在 \(\triangle AOP \) 中，\(\overline{AP} = \sqrt{8^2 - 2^2} = 2\sqrt{15} \), \(\overline{AB} = 4\sqrt{15} \)

同理，在 \(\triangle BOC \) 中，\(\overline{BC} = 2\sqrt{15} \)

(2) 由正弦定理：
\(\frac{2\sqrt{15}}{\sin A} = \frac{AC}{\sin B} = \frac{4\sqrt{15}}{\sin C} = 2 \times 8 \)

\(\Rightarrow \sin A = \frac{\sqrt{15}}{8} \)\hspace{1em} \sin C = \frac{\sqrt{15}}{4} \hspace{1em} \sin B = \sin(180^\circ - A - C) = \sin(A + C)

\[= \sin A \cos C + \cos A \sin C = \frac{\sqrt{15}}{8} \times \frac{1}{4} + \frac{7}{8} \times \frac{\sqrt{15}}{4} = \frac{\sqrt{15}}{4} \]

法 1：代回正弦定理，\(\overline{AC} = 16 \sin B = 4\sqrt{15} \)

法 2：由 \(\sin B = \frac{\sqrt{15}}{4} \), 得 \(\cos B = \frac{1}{4} \), 利用餘弦定理：
\[\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2 - 2\overline{AB} \overline{BC} \cos B = (4\sqrt{15})^2 + (2\sqrt{15})^2 - 2 \times 4\sqrt{15} \times 2\sqrt{15} \times \frac{1}{4} = 240 \]

\(\overline{AC} = \sqrt{240} = 4\sqrt{15} \)

答：4\sqrt{15}
H.如下圖，在坐標空間中，A,B,C,D,E,F,G,H 為正立方體的八個頂點，已知其中四個點的坐標
A(0,0,0)、B(6,0,0)、D(0,6,0)及 E(0,0,6)

P 在線段 CG 上且 CP : PG = 1 : 5，R 在線段 EH 上且 ER : RH = 1 : 1，Q 在線段 AD 上。若空間中通過 P,Q,R 這三點的平面，與直線 AG 不相交，
則 Q 點的 y 坐標為 。(化成最簡分數)

解：(1) 根據題意，設
G(6,6,6), P(6,6,1), Q(0,k,0), R(0,3,6)

(2) P,Q,R 三點的平面，與直線 AG 不相交
⇒ 法向量 \(\vec{n} \) 垂直方向向量 \(\vec{d} \)

(3) \(\vec{RQ} = (0,k-3,-6), \vec{RP} = (6,3,-5) \)

\(\vec{RQ} \times \vec{RP} = (-5k+33, -36, -6k+18) \)

⇒ 法向量 \(\vec{n} = (-5k+33, -36, -6k+18) \)

\(\vec{AG} = (6,6,6) = 6(1,1,1) \)

⇒ 方向向量 \(\vec{d} = (1,1,1) \)

法 1：∵ \(\vec{n} \perp \vec{d} , \quad \vec{n} \cdot \vec{d} = 0 \) \quad 即 \(-5k+33)+(-36)+(-6k+18) = 0 \), \(k = \frac{15}{11} \)

法 2：∵ \(\vec{AG} \cdot (\vec{RQ} \times \vec{RP}) = 0 \), \(\Rightarrow \)

\[
\begin{vmatrix}
6 & 6 & 6 \\
0 & k-3 & -6 \\
6 & 3 & -5
\end{vmatrix} = 0 \Rightarrow \begin{vmatrix}
k-3 & -6 \\
-3 & -11
\end{vmatrix} = 0 \Rightarrow k = \frac{15}{11}
\]

答：\(k = \frac{15}{11} \)
參考公式及可能用到的數值

1. 首項為 \(a \)，公差為 \(d \) 的等差數列前 \(n \) 項之和 \(S = \frac{n(2a_1 + (n-1)d)}{2} \)

2. 首項為 \(a \)，公比為 \(r \)（\(r \neq 1 \)）等比數列的前 \(n \) 項之和 \(S_n = \frac{a(1 - r^n)}{1 - r} \)

3. 三角函數的和角公式：
 \[
 \sin(A + B) = \sin A \cos B + \sin B \cos A \\
 \cos(A + B) = \cos A \cos B - \sin A \sin B \\
 \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
 \]

4. \(\Delta ABC \)的正弦定理：
 \[
 \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = 2R \quad \text{(R為\(\Delta ABC \)的外接圓半徑)}
 \]

5. \(\Delta ABC \)的餘弦定理：
 \[
 c^2 = a^2 + b^2 - 2ab \cos C
 \]

6. 一維數據 \(x_1, x_2, \ldots, x_n \)，算術平均數：
 \[
 \mu_x = \frac{1}{n} (x_1 + x_2 + \ldots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i
 \]

 標準差：
 \[
 \sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)^2} = \sqrt{\frac{1}{n} \left(\sum_{i=1}^{n} x_i^2 - n\mu_x^2 \right)}
 \]

7. 二維數據 \((X,Y)\)：\((x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\)，相關係數 \(r_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{n\sigma_x \sigma_y} \)

 迴歸直線(最適合直線)方程式 \(y = \mu_y + r_{x,y} \frac{\sigma_y}{\sigma_x} (x - \mu_x) \)

8. 參考數值：
 \[
 \sqrt{2} \approx 1.414; \quad \sqrt{3} \approx 1.732; \quad \sqrt{5} \approx 2.236; \quad \sqrt{6} \approx 2.449; \quad \pi \approx 3.142
 \]

9. 對數值：
 \[
 \log_{10} 2 \approx 0.3010, \quad \log_{10} 3 \approx 0.4771, \quad \log_{10} 5 \approx 0.6990, \quad \log_{10} 7 \approx 0.8451
 \]
102 年 學測 試題分析

冊別
- **第 1 冊**
 - 複習單元 1: Ch1 數與式
 - 102 學測題目: A
 - 占分: 5
 - 複習單元 2: Ch2 多項式函數
 - 102 學測題目: 9, B
 - 占分: 10
 - 複習單元 3: Ch3 指數, 對數函數
 - 102 學測題目: 2, 8
 - 占分: 10

- **第 2 冊**
 - 複習單元 4: Ch1 數列與級數
 - 102 學測題目: 12
 - 占分: 5
 - 複習單元 5: Ch2 排列, 組合
 - 102 學測題目: 1, 5
 - 占分: 10
 - 複習單元 6: Ch3 機率
 - 102 學測題目: 3
 - 占分: 5
 - 複習單元 7: Ch4 數據分析
 - 102 學測題目: 4
 - 占分: 5

- **第 3 冊**
 - 複習單元 8: Ch1 三角
 - 102 學測題目: 6, G
 - 占分: 10
 - 複習單元 9: Ch2 直線與圓
 - 102 學測題目: E, F(1)
 - 占分: 7.5
 - 複習單元 10: Ch3 平面向量
 - 102 學測題目: 10(1), C, D, F(2)
 - 占分: 15

- **第 4 冊**
 - 複習單元 11: Ch1 空間向量
 - 複習單元 12: Ch2 空間中的平面與直線
 - 102 學測題目: H
 - 占分: 5
 - 複習單元 13: Ch3 矩陣
 - 102 學測題目: 7
 - 占分: 5
 - 複習單元 14: Ch4 二次曲線
 - 102 學測題目: 10(2), 11
 - 占分: 7.5

20 題 100 分